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The electron distribution functiofEDF) in an electron cyclotron resonan¢ECR) discharge is far from
Maxwellian. The self-consistent simulation of ECR discharges requires a calculation of the EDF on every
magnetic line for various ion density profiles. The straightforward self-consistent simulation of ECR discharges
using the Monte Carlo technique for the EDF calculation is very computer time expensive, since the electron
and ion time scales are very different. An electron Boltzmann kinetic equation averaged over the fast electron
bouncing and pitch-angle scattering was derived in order to develop an effective and operative tool for the fast
modeling(FM) of low-pressure ECR discharges. An analytical solution for the EDF in a loss cone was derived.
To check the validity of the FM, one-dimension@h coordinate¢ and two-dimensionalin velocity) Monte
Carlo simulation codes were developed. The validity of the fast modeling method is proved by comparison
with the Monte Carlo simulations. The complete system of equations for FM is presented and ready for use in
a comprehensive study of ECR discharges. The variations of plasma density and of wall and sheath potentials
are analyzed by solving a self-consistent set of equations for the EDF.

PACS numbes): 52.50.Gj, 52.65.Ff, 52.65.Pp

[. INTRODUCTION Mechanisms of the formation of non-Maxwell EDF's were
investigated in detail experimentally and numerically, mainly
In recent years, low-pressure, high-density plasma sourcé8 capacitively and inductively coupled plasniés7], and in
have attracted considerable interest for application in matedc discharge$8].
rial processing, e.g., etching, deposition, ¢id. One of the A natural approach to the modeling of discharges at low
possible mechanisms for plasma generation in these sourcBEessures is the use of the particle-in-q@lC) computer

is electron cyclotron resonan@eCR) heating. Typically, the ~Simulation along with the Monte Carl®/C) technique{9].
operating gas pressures in ECR reactors range frond i However, the enormous range of the spatial and temporal

-2 ; cales precludes a straightforward application of the PIC and
10" Torr. Correspondingly, the electron mean free path ca’@c methods to the self-consistent modeling of discharges.

be larger than or comparable to the discharge dimensio he highest characteristic frequency is the electron plasma
(typically several tens of centimeterdnder these condi- 9 1 K y ’

tions, the electron distribution functiofEDF) is far from
Maxwellian, and can be enriched by slow electrds;

frequency we,~ 101%™ and the electron cyclotron fre-
quencywe~ 10'%s™1 whereas the ion residence time in the

ischarge is about 10 s. The characteristic spatial scales in

moreover, the EDF_ can hav_e a proqounceq high-energy Bhe Poisson equation, i.e., the Debye radigand the sheath
[3]. A non-Maxwellian EDF is associated with a number Ofthickness, are about 1 mm, whereas the discharge dimen-

nonlinear phenomena of the discharge self-organization. Thgsns are 10-30 cm. To eliminate small spatial and temporal
high-energy electrons determine the dissociation and ionizgjme scales, one has to use the quasineutrality condition in-
tion rates. The slow electrons are responsible for the formastead of the Poisson equation. The PIC with MC treatment of
tion of the ambipolar potential in the plasma bulk. It wascollisions and the quasineutrality equation for the electric
demonstrated4] that the formation of a two-temperature field were combined for the self-consistent modeling of an
EDF can be accompanied by an explosive generation of thECR discharge in Refd10,11]. Electrons were treated by
bulk plasma density. The distribution of electron temperaturehe guiding center approximation. This approximation ex-
in the direction transverse to the magnetic field effectivelycludes the electron gyro time scale from the dynamics. The
influences the plasma profi[®]. Since the EDF form is of fastest temporal scale left in this scheme is the electron
primary importance in low-pressure discharges, it is necesbounce timet,~L/v., which is about 100 times shorter than
sary to solve the kinetic equation for the electrons even for ahe ion lifetime=L/v; .
qualitative description of such discharges. For these reasons, An averaging procedure is needed to avoid resolving the
the EDF in ECR discharges should be fully addressedtime scale of the electron bouncing. A natural approach is to
model the discharge using a space-time-averaged kinetic
equation. This approach allows one to perform simulations

*Electronic address: ikaganov@jetson.uh.edu for a wide range of parameters and even simultaneously with
"Electronic address: misina@fzu.cz experiments. Moreover, one can analyze in detail compli-
*Electronic address: berezhnoj@phtf.stu.neva.ru cated interactions of different physical processes, which is
SElectronic address: gijbels@uia.ua.ac.be not possible otherwispt].
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The kinetic analysis of the self-consistent motion of elec-cienﬂy during a timet, = ,/277/‘/\,”|dwec/dx| and within a
trons and ions in capacitively coupled plast@CP dis-  gistance dx, = v27v,/\[dwe/dx]. Under the conditions
charges has been_ reported earligg]. It is bgsed on the discusseddx,~1 cm<L and the resonance region can be
theory developed in Ref$13,14. Fast modelingFM) for  considered as narrow. The change in energy after passing the
the case of an inductively coupled plasi€P) was pre-  (esonance zone (@ “kick”) is Ae,=mv,Av,~
sented in many papefsee, e.g., Ref315,16). The success (g v dx,)/v,), wherev, is the perpendicular velocity
in the modeling of CCP and ICP has encouraged us t0 desngE js the amplitude of the wave electric field, and is of the
velop a similar method for ECR modeling. order of 1 eV/cm. Since the kick in energy is much smaller

The kinetic equations averaged over electron bouncinghan the energy itself, the series of subsequent kicks can be
were derived for an EDF study in ECR discharges in severalescriped as a diffusion in the energy space.

papers[17,18,19. In all these papers pitch-angle scattering
due to collisions with neutrals was neglected. The results of
MC modeling[20] and theoretical estimat¢44] show that

the largest part of the electrons should be trapped in an elec-
trostatic potential well. As a result of the long residence time  In this section we shall briefly summarize the main results
in the potential trap, exceeding the electron-atom collisiorof the electron interaction with a wave in the resonant point.
time, the EDF is close to an isotropic function even thoughThe nonrelativistic equation for the complex perpendicular
the electron mean free path can be large compared to theelocity v, =v,+iv, reads

discharge dimensions.

For the calculation of the EDF in ECR discharges, in this d ] e Ceu(t)
paper we present an electron Boltzmann kinetic equation aVLJF""eCVL:_ﬁ E e, @
(zero dimensional in space, and one dimensional in energy
averaged over fast electron bouncing and over elastic colliwvhereE, is the amplitude of the wave electric fielg,, is
sions, which is similar to what was done in Reff$2-16.  the phase of the wave, amtlp,,/dt=w. The integration of
An analytical solution for the EDF in the loss cone is de-Eq. (1) from the timeT to the timeT yields[21]
rived. The validity of the FM method is proved by compari-

IIl. ELECTRON-WAVE INTERACTION
IN THE RESONANCE POINT

son with Monte-Carlo simulationgone dimensional in VL(T)=[Vp(T)+vl(—T)]ei‘Pg(T), (29
space, and two dimensional in velogitfExamples of self- N _
consistent simulations are shown in Sec. IV. where ¢4(T)=J _;[eB(x)/mc]dt+ ¢, is the phase of the

electron gyration, and

Il. DESCRIPTION OF THE MODEL e T ., ,
Vp(T)= — Eif el (et —ewt gt (2b)
The developed theory is applicable to a wide range of m -
conditions. However, to be more specific, we consider a con- . ) ) _ )
ventional ECR source with a microwave frequency of 2.45iS the change in velocity due to the interaction with the elec-
GHz. The electron resonance occurs at a magnetic field equi|C field of a wave. The maximum contribution in integral
to 875 G. We assume that the magnetic field is monotoni{2D) iS at the point of resonande-0, d¢,,/dt=deg/dt. The
cally decreasingknown as a magnetic beaglso that there absolute velocity of V| nearl_y does not vary when the elecj
is only one point of resonance. The pressure is taken in thEONS pass resonance for times longer than the interaction
range of 0.1-10 mTorr. The background gas is argon. Ajime t. This means that the tim€ can be extended to in-
axisymmetric chamber of a width= 20 cm was considered. finity;
All electron drifts are azimuthal because of the symmetry. .
The electron gyro radius is extremely sm&kt0.1 mm. Vi _° ELJ ei(qogu’)wW(t’))dtr%E E.t,,
Thus electrons are tied to a fixed flux tube. Furthermore, we Pm —o m
may assume that the electron motion is one dimensional,
since the azimuthal motion can be ignored in the cylindricawhere
geometry. . .
The averaged electron energy is determined from a bal- tr:j ei(cpg(t')—<pw(t’))dt/%e¢9ij el eat?2g

ance of the ionization and particle losses, and is typically a —o
few eV. This implies that the ambipolar potential should also
be of the order of several V. The plasma density varies from _ 2_77 " i (0% ml4)
10° to 10cm ™2 in ECR discharges. The amplitude of the B ©y ’
electric field in the wave is a few eV/cm. The main interac-
tion of electrons with a wave in the resonance region is ded= ¢4(0)— ¢,,(0) is the difference of the electron gyro ro-
fined by w..=[eB(X)/mc]=w, Where w is the wave fre- tation phase and the wave phase at the moment of resonance
quency,B is the magnetic fieldm is the electron masgis  we.=, ¢g=(dw:/dX)v,; the minus sign corresponds to a
the elementary charge, awds the velocity of the light in a  positive ¢, and the plus sign to a negativg .
vacuum. Electrons effectively gain or lose energy from or to  From Eq.(2) one can find the energy change in the reso-
the wave, until the phase of the gyration and the wave phasegance in formg21]
depart [([eB(x)/mc]— w)dt~a [1]. This implies that the
electrons with parallel velocity, interact with a wave effi- € (n+1)=EintEpT2VE 18pCOL O, F7/4), (39

— o0
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Tos1/ €B(X) IV. AVERAGING PROCEDURE OVER FAST ELECTRON
Ons1=0p+ f — w)dt, (3b) BOUNCING AND PITCH-ANGLE SCATTERING
Tn FOR TRAPPED ELECTRONS

where s,=(m/2)|V,|?, and n denotes subsequent interac- We start from the stationary electron Boltzmann kinetic
tions at momentsT,. The integral ﬂnﬂ([eB(X)/mC] equation in the drift approximation for the distribution func-

. ) tion f(vy,u,x):
— w)dt denotes the number @@N) of rotations with angle
velocity (we.— w) during one bounce of electron along the of do af . EC
discharge. If the magnetic field variation along the discharge Vigy *| € g #VB a_v”:S‘(f )+SE(F)+SER(E),
is not too small,we.— w~w, we can estimat®~tyw/2m, 7

where t, is the bounce period. Under our condition,

~1000. Analyzing mapping3), one can find a condition for wherell and_L symbols denote the directions along and per-
an instability of the trajectorye( ,,,6,). The trajectory in- pendicular to the magnetic field, respectiveS(f) is the
stability leads to a stochastic motion. A rough criterion con-collision integral for elastic collisions with atomS; () is
sists in the following conditiofi22]: The motion is stochastic the collision integral for inelastic collisions with atoms, and
if the kick in energy in the resonance results in a variation ofSE°R(f ) is the integral describing electron interactions with
the next phase by more thaf6,  ,|>m or |[6N|>1/2. The the wave electric field in the resonance point. The EDF is
electrons move along a magnetic line in an effective potennormalized according to

tial —ed(x)+ uB(x), whered(x) is the electrostatic po-
tential andu=mv?/2B is the first adiabatic invariant, with a
constant total enerng:O.anvf—eCD(x)+,uB(x). The
values ofe,u characterize the trajectory and, correspond- o i
ingly, the number of rotations. A variation in the perpendicu-Note that the distribution functiorf (v, x)dv,du corre-

lar energy changes values of, u, andN, respectively. So sponds to a linear density of electrons along magnetic lines

the criterion for stochastic motion can be written in the formNdSdS,, wheredSis the area between neighboring mag-
netic surfaces. The magnetic flux is constantB¢&)d S(x)

=BydS and the linear density scales aB,/B(x). Let us
>1/2, (4)  consider the case of a monotonically increasing magnetic

field. Due to the conservation of the magnetic momentum

and energy, particles with low energy cannot penetrate into
WhereAgL:8p+2\/rnspcos(ﬂn+1:7ﬂ4)- SinceNis very  the regions with higher magnetic field. In a currentless
large (~1000, even a small dependence Nfon &, will plasma one can expect that the linear density of particles
result in a stochastic motion. Thus in what follows we shallalong a magnetic tube is smaller there. Nevertheless, the vol-
assume that criterioid) is fulfilled, and consider a value ume densityn is uniform for isotropic EDF. The uniform
6,., as independent from the previous oflig. In other — Maxwell distribution function
words, the phases of subsequent interactions are assumed to

n(x):f f(VH ,M,X)dVHVLdVL . (8)

IN(gy,
’ (HM)ASL

(781_

be random. The more complicated case, when critgdprs f n( m )3/26)([{ _ mv?

not valid, was considered in a number of papers; see, e.g., 27T, 2T,

Ref.[22]. In this case stochastization can occur due to the a0 5

pitch-angle scatterinf23,24. =n< m ) exp( _ mvi+uB
Under the assumption of random phases of subsequent 27T, 2T,

interactions, the integral describing electron interaction with

the electric field can be modeled by a diffusion in the mag4s a solution of the kinetic equatiai@) without collisions on
netic moment. The exact derivation can be found elsewherdhe right-hand side and the density is uniform, independently
see, e.g., Refd18,19,22,23 The most efficient method of ©f the magnetic field configuration.

derivation was proposed in Ref25]. Considering times Substituting the expression for the integBi<(f ), the
longer thant, and distances larger thaix, , the electron-  kinetic equation(7) reads:

wave interaction integral can be written in the fof&b]

af+ ae VB&f—f+*f+5
. ; y Vigk Tleax M WH—S(( )+ S (F)+vo(x—x;)
f)=v,6(x—%)—D,—, 5
SIR()VH( r)(m Hop 5 XaDaf .
o Prgp (93
pecE  x o . .
D,=0.5(Aun)?)= , (6) Further simplifications are possible by averaging over the
K B dB ¢ ; & A
V| ast electron bouncing. The total energy,=0.5mv;
dx —e®(x)+ uB(x) is conserved, so it is natural to perform a

transformation from variables;,u to the new variables:
where angular brackets denote averaging over ph@se#t longitudinal energye; (for the particular case of an ECR
is presumed that the kick in the perpendicular energy is smallischarge the total energy coincides with the longitudinal
compared with the energy. energy, andu. In new variables, E(9a) reads
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J Bo —
VH&—XS—St(f)=S{‘(f)+vH5(x—xr) ﬁ*‘g <VD£>:J J J Da(X,u,v)) 8(e —e(X,u,v)))Bdxdudy
J Bo _ X (&) Viimax
XDyl gt £>f, (9b) —f“s) dxfo D.(x,u(e,vy),v)dvy, (11)

We consider a low-pressure discharge where the bounce fré\lher‘g V\ImaxEV:\/Z(3+eq)(X))2/mv Bu(e,v))=e+ed(X)
quency is higher than or comparable with the collision fre-—Mmv{/2, andD,=v;8(X—x,)B°D,, .

quency. The opposite case can be easily studied by a two- As a result we obtain the traditional kinetic averaged
term approximation. We focus on the time scale of the EDFequation in the nonlocal approaci27], (Sf(f))

evolution, which is governed by the inelastic collision fre- +(SECR(f))=0 where double averaging is produced ac-

* * J—
quency v*. In most gases/*<v. As we shall see, the i to(G)= [ dx/;™dv,. We assume that the reso-
electron-wave interaction integral can be estimated as X(2)

IS (f)|=v*f in the stationary state. This means that thenance point coincides with the coordinate of the potential

terms on the left-hand side of E(®b) are much larger than minimum, th%pposi.te case \.Ni” be. discussed later. Thg av

the terms on the right-hand side. The isotropic, uniform EDFEr@ding of(S; Nf)) is especially simple for the ECR dis-

in total energy equalizes the large terms on the left-hand sidgh@rge due to th@ function in Eq.(S). Integration ovew;

of Eq. (9b) to zero. Thus, when the conditions>»* and  andx gives the simple answer

v/IL>v* are applicable, the EDF satisfie$(e,x,t) ECR T v —

~Fo(e). In other words, the total energy is practically con- (SFER(f))=(d/de)(vD,)(df/de),

served during electron bouncing between turning points and 4 the averaged kinetic equation reads

scattering in elastic collisions. The assumption that the EDF

depends solely on the total electron energproves to be d

suitable for an adequately accurate description of the electron de (

kinetics. In comparison t&y(e), the coordinate-dependent

parts of the EDF are small corrections of the order of — " . .

(v*1v), (VLI v*)? [26], =2 vi(e)Fo(e) = 2 Vi (e +e)Folete),
To find Fo(e) we need to perform averaging of E®a)

over the coordinate and the velocity angle. To do so, it is (12)

natural to rewrite Eq(9a) in an integral form

vD,(e)

dFo(S))
de

where

fff (=St (f)dv=-— %ffdé, (10 <V5>8=4?7T (eE, g)?

mdx

wheredV=B(x)dx du dv, is the phase volumd; =v, f&,
=V 8(X—X)D ,(€,(d/ ) +€,(dl de))f is the flux of EDF o i )
across boundaries of the phase volume. We can integrate E§d the upper bar denotes only averaging in coordinate, since
(10) over the phase volume limited by two neighboring val- th.el averaging of inelastic frequency in velocity angle is
ues of total energys ande+de. We assume, first, that the trivial:
energy is lower than the wall potential, so that the electrons X, () v X, ()
are trappeq in a potential well between turning points (%)= B dxf ”maxd\,”,,ﬁ :f ’ dxvei=vrl.
corresponding tou=0 and v;=0: X.(eg), where ¢ X_(g) 0 X_(s)
=—ed(X.). The phase volume is

V. MONTE CARLO SIMULATION OF THE ELECTRON

AVZJ j fe<s(x,M,v”)<s+dsB(X)dXdlu“dVH VELOCITY DISTRIBUTION FUNCTION IN THE
ECR DISCHARGES

X,i(e
= (dglm)fx,ie;\’dx’ To verify the analytical results, we have developed a MC
model of the ECR discharge, which is one dimensional in
where v _is the absolute value of the velocityv  space and two dimensional in velocity. The electrons are
=y2(e +ed(x))/m. There are no fluxes across the coordi-moving in the stationary electric field with potentid(x)
nate boundarieX-. (&), since the electrons are trapped. Theand magnetic fiel(x) through the discharge of a length
only remaining flux is due to the diffusion in the energy There is an electron cyclotron resonance zone in the middle
space. Assumind(x,u,e)~Fo(e), we find of the discharge, where the electrons experience a change
Ae, (a“kick” ) in the perpendicular energy according to Eq.
Fdd= dr,(e), (3), with a random phasQ.
The electrons are either absorbed or reflected at the
. o boundaries depending on the magnitude of their parallel ki-
whereT ,(g) = —(vD,)[dFy(e)/de], and(vD,) is the en- netic energy compared to the prescribed wall potential. All
ergy diffusion coefficient averaged over the space-pitch scaross sections were taken in the formr(d,EE;)
tering angle: =1II(9,E,)o(E), whereE is the electron energy before col-

§s<s(x,/¢,v“)<s+da
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lision o(E) is the total cross sectioi, is the kinetic energy a)
after the collision(i.e., with the energy loss deduciead eV,
and the dependence on the scattering arfgl®as adopted
from Ref.[28] in a form

=
2In(1+E/2)(E Sif9/2+1) "

II(9,E= (13

The elastic and excitation collisions of the electrons with
argon atoms are incorporated into the model. The data from
Ref. [29] were fitted to obtain the total elastic cross section
in cn?:

Perpendicular energy (eV)

1.5x10° 16 for E<0.08 eV Parallel energy (eV)
c 10 *®expy;) for 0.08 e\<E<16 eV b)
oelB)= y, for 16eV<E<100 eV s x=L/13
5.901x 10 ®x E~ %543 for E=100 eV,
where

y,=10 194.658+ E{—0.2073+ 10 °E{4.506+ 10 2
X E[ —4.974+ 10 %E(2.684-5.613< 10 3E)}1}],

Perpendicular energy (eV)
o 3

y;=(0.1655+ x{1.613+ x[— 0.07181

,O\v.

%,
0 5 .
+ x(—0.3825+ x{0.1339+ x[ 0.04361 0 5 10 15

+x(—0.01297-x0.00154111) T}, Paraliel energy (eV)
_ ) . . ) i FIG. 1. The EDF as a function of the perpendicular kinetic
x=In(E); andE is the electron kinetic energy in eV. The fit energy (v2/2=pB) and parallel kinetic energmv2/2 at two lo-

for E>100eV is from Ref[30]. . _ cations in the dischargéa) x=0, and(b) x=L/3. L=0.2m, the
The excitation only to one level of 11.5 eV is consideredgjectric field in the resonance is 0.7 Vicm, the potential

using the cross section in a simplified form given by —Uy(x/2L)2, U,=5 V, B(x)=B,[1+ (2/m)arctanE-x/x,)], By
=0.0875 T, andk,=5 cm.
0 for E<11.5eV

7x10 ¥(E—-11.5 eVj cnP eV and energies determined using the distribution function re-
corded so far. The procedure is continued for a total time
for 11.5 eV<E<20 eV long enough to get obtain sufficient statistics in the distribu-
5.95<10 ¥ cn?  for E=20 eV. tion function over the range of energies of interest. Finally,
the distribution function in the total energy and the first in-
The discharge length is divided into a regularly spaced;ariant are recalculated to the velocity distribution function
grid. The electrostatic potential and magnetic field are degs functions of parallel and perpendicular energy. It is ex-
fined on the grld A test electron is started with initial paral- pected that our Spatia| MC technique is faster than the tem-
lel and perpendicular energies of 1 eV. We used a Spatial M(éora| MC technique(steps in time rather than space are
technique, instead of the conventional temporal one; segnadg for large mean free paths, when collisions within one
e.g., Ref.[31]. It implies that one step of the simulation step on the spatial grid are rare. In the opposite case, the

consists of moving the test electron from a grid point to thetraditional temporal technique is more appropriate.
next spatial grid point. Next an appropriate bin of the distri-

bution function in the total energye) and in the first invari- VI

ant (u) is incremented by unity, and the elapsed time is in- KINETIC EQUATION AVERAGED OVER FAST
creased by the time of flight between the grid points. The ELECTRON BOUNCING AND PITCH-ANGLE

c_oIIisions are treatgd by the null-c_:o_llisi(_)n technique. If the gCATTERING BY COMPARISON WITH MC RESULTS

time remaining until the next collision is smaller than the

time of flight between the grid points, the position of the Since we intend to analyze only electron kinetics in this
collision is found, the kind of collision is determined, the section, we restricted ourselves in these simulations to the
velocity scattering and energy loss are performed upon thease of a fixed ambipolar potentidl(x) and a given wave
test electron, and a new collision time is sampled from theelectric field in the resonance point. First we check the as-
exponential distribution using maximum collision frequency sumption of an isotropic EDF. The discharge parameters are
and a random number. The integration then continues fronf width L=0.2 m; the potential is modeled in the parabolic
the position of collision. When the electron is lost at theforms®(x)=—Uy(2x/L)2 andU,=5 V, unless stated oth-
boundary, a new electron is started with the initial positionerwise. The magnetic field is taken in the forBy(x)

oexd E)=

. VERIFICATION OF ELECTRON BOLTZMANN
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a
) a) E0=0.7 Vicm,
107 107 non-local
x (M) O MC inhomog. B
+ MC homog. B
+-0.100 ,
) 0-0.067 1073
5 0-0.033 _
£ B}
g 40.000 Lo
LDI. % 0.033 ICX
o ®0.067 é
+ 0.100
10"
40 0°% 10 20 30
Kinetic Energy (eV)
Total energy (eV)
b)
b)
107 -
x(m) 10 E0=2.1 Vicm,
10° | non-local
*-0. o MC
- by 0.100 .,
2 i 0-0.067 1073
5 1074 ©-0.033
£ 40.000 ~ 10"
'E 10° 4 x 0.033 g%
w ©0.067 o 10%4
o
10°® +0.100 w
10°7
107 . . .
10° T T T T + T T . )
0 10 20 30 0 10 20 30 40 50 60 70 80 90
Total Energy (eV) Total energy (eV)
FIG. 2. The EDF as a function df) kinetic energy[ m(v? FIG. 3. The EDF's calculated from the averaged kinetic equa-

+v?)/2] and (b) total energy[m(v?+v?)/2]—ed(x) at various tion (solid lines and by the MC methodsymbol$ as functions of
locations in the discharge. The discharge parameters are the sameths total energy. The argon presspre 1 m Torr, no wall losses are
in Fig. 1. accounted for, the given potential profile is® (x) =Uq(2x/L)?,

and the discharge width=0.2 m. Circles correspond to the mag-
=By(1+ (2/m)arctan(-x/0.1m)), where By=875G. In  netic field B(x)=Bo[ 1+ (2/7)arctanf-x/x;)], Bo=0.0875T, X,
some runs for the sake of comparison, we use a homoge-10cm, and crosses correspond to a homogeneous magnetic field
neous magnetic fiel=_875G, but with the same value of and the same velocity kicka) The electric field in the resonance is
velocity kick as for the inhomogeneous magnetic field. AnE, =0.7 V/cm. (b) E, =2.1 V/cm.

argon pressure op=1 mTorr was assumed, unless stated
otherwise. nigue by averaging the ratio of the square of the energy

In Fig. 1 the EDF’s are shown as functions of the perpenchangeAe and timeAt over the electron ensemble. The time
dicular kinetic energyrfiv?/2=uB) and parallel kinetic en- At was chosen large compared with the bounce time and the
ergy mvflz at the discharge center andxat L/3. One can time between collisiondt>L/v andv, but not too large, so
see that the EDF'’s are perfectly isotropic at the shown locathat the energy change during time is Ae(At)<e. For no
tions. As discussed above, this implies that the EDF is isoglectric field present in the plasnteorresponding to a uni-
tropic everywhere. The results of MC calculations confirmform plasma density
this finding. In Fig. 2, EDF’s at different spatial points are _
shown. All EDF’s coincide with each other after being re- _(vD,) 2me (eE))?
drawn as a function of the total energy. (D.)= Lv  3mL |[dwed °

The EDF's calculated by both FM and Monte Carlo meth- dx
ods are presented jointly in Fig. 3 for comparison. The agree-
ment between FM and MC methods appears to be reasofy Fig. 4 one can see that the analytical expression predicts
able. In Fig. 3 one can see that the isotropic Eilifes not the value of(D,) fairly well.
depend on the magnetic field distributjgorovided that the
velocity kick in the resonance is the same, as follows from VIl ANALYTICAL SOLUTION FOR THE EDE

Eq. (12). IN THE LOSS CONE
We also checked if the model of diffusion in energy is
correct. For this purpose we calculated the energy diffusion In this section we shall provide a general solution for the

coefficient(D,)={((A&)?/At) with the use of the MC tech- EDF in the loss cone for any discharge. Simulations of the
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FIG. 5. Average scattering anglé) = 3 [ 7T1(9,&)sin 9d9 as a
FIG. 4. The energy diffusion coefficietb,)=((Ae)?/At) asa function of energy for differential cross section taken in the form

function of energy calculated by the MC method for a homoge- €

neous potential and the analytical expression 11(de)= 2In(1+&/2)(e sifd/2+1)

— 2w (eE)% The solid line corresponds to the calculated integral, and the dashed

<D€>:? dog line to the analytical limit at high energies>1 (9)—(1
Max +al\e)/[2 In(1+¢/2)]
B(x) =Bg[1+ (2/7)arctant-x/x;)], By=0.0875T, and electric
field in the resonance i§, =0.7 V/cm. <(2-3)T4 can actually escape. The fact that the fraction is

small follows from the assumptioifi,,;;<—e®,,. In other

EDF in the loss cones have been described in many paperapords, the loss cone is small. The assumption of a small loss
see, e.g., Ref31,37. However, to our knowledge no ana- cone allows us to find an analytical solution for the EDF that
lytical solution for the EDF in the loss cone was found ear-accounts for wall losses.
lier. In this section we provide this analytical solution, and  To find the EDF analytically in the loss cone we shall
also show how the wall losses should be incorporated int@ssume that the differential cross section has no singularity at
Eq. (12) for the main part of the EDF. We start the discus-small angles. This is correct for an electron kinetic energy of
sion without taking the magnetic field into account, and atthe order of the ionization potential. Figure 5 depicts the
the end generalize the result for the presence of an inhomaverage scattering angle as a function of the energy for argon
geneous magnetic field. We also assume first that the elefthe differential cross sections are given by Et@)]. One
trostatic potential is symmetric in the left and right parts ofcan see that average scattering angle is laig¢~0.5rad,
the discharge. The generalization for an asymmetric potentigbr s ~1. For high energies> |, the differential cross sec-
is obvious. tion eventually should approach Coulomb scattering, so the

Electrons can escape if their energy is higher than the wathpproximation we used fos~1 is not applicable. In the
potential e>—e®,,. The electrons with energies ed,,  following we therefore assume the small angle scattering is
<e<—ed,+(2-3)T;, Where Ty;=—(dIn f/ds);j,e@w not important and can be neglected. If important, the small

is a characteristic energy scale at the tail of the EDF, deter@ngle scattering can be incorporated by describing the colli-

mine the electron flux to the wall and are of primary interest.sion integral as diffusion in the velocity angle.

Obviously, the flux of electrons with e>—ed,, The distribution function outside the loss cof@LC) is

+(2=3)T,y; is negligible. TypicallyT,;~1—2 eV[32], and  quite different from the EDF inside the loss coft®) fc.

for most cases the wall potential is slightly above the ioniza-The main processes that form the EDF’s inside and outside

tion potential ():—ed,~I. This implies that T,; the LC are elastic scattering and spatial displacement, so that

<—ed,,. The wall potential can be below the ionization other processe@nelastic collisions and diffusion in energy

potential in the case of high pressure discharges, where tH&@n be neglected. The collisional integral with neutrals can

electron undergoes many collisions before reaching the walPe written in the form:S(f)=/(f’—f)v(do/dQ)d,

i.e., there is a high probability of ionization event for a singleWheref’ is the EDF of electrons before scattering to a given

pass of an electron across the discharge. Then the wall pyelocity v. The EDF is determined by the equation

tential above the ionization potential is not anymore a nec-

essary condition for a self-sustained dischdi3@. v ‘9_f‘ :f (f' —f )Vd_‘T do (14)
Electrons with a given total energy, which can escape to X 9% dQ '

the wall, form a loss cone in the phase space. They are char- °

acterized by a positive velocity projection perpendicular to  The EDF outside the loss cone is close to isotropic, and is

the wallsv,(wall)>0 and by a parallel energy,=mvZ/2  only a function of total energy onlff,. Indeed the electrons

—ed(x)>—ed,,. The latter condition is equivalent to a outside the loss cone can be scattered into the loss cone due

perpendicular energeyizm(vinva)Q:e—sX being small, to the elastic collisions, and consequently be lost. But since

ie., e, <et+ed,. Thus from electrons with a total energy the loss cone is assumed to be small, the electrons will re-

large enough to overcome the wall potential i-ee®,,<e main more frequently in the OLC region rather than leave

<—ed,,+(2-3)Ti, only a small fraction for whicke to the LC. This results in an isotropic EDF. We can estimate
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the deviation from the isotropic EDF outside the loss a) (o)
cone sf=f—F, from Eq. (14). The collision integral reads ). x-0.1"
J('=1)v(do/dQ)dQ = [y f'v(da/dQ)dQ + [ f'v(da/ +-0.066
dQ)dQ—vof, where the first integral is over the region . :;)0'033
OLC and the second one inside the LC only. For an isotropic £ 00.033
EDF, St(Fg)=0 and [qFiv(do/dQ)dQ+ [ Fov(dal 2 ©0.066
dQ)dQ=voF,. Substitutingf=F,+ f outside the loss 5 0.1
cone andf=f. in the loss cone, we find the collision inte- 5 N -0iso
gral  [(fic—Fp)'v(da/dQ)dQ —vodf + [y0f ' v(da! ’ analytic
dQ)dQ. From this equation one can estimate thait 0 S
=(A,Q/47)Fy<Fgis small, since the loss cone is assumed 0 10 20 20 20
to be smallA|.Q/47r<1. Paraliel energy (eV)
The relation between an EDF OLC and one in the LC can
be found from Eq(14). The main income term of the EDF in b)
the loss cone is due to the pitch-angle scattering from the 4- X (m)
outside of the loss cone into the loss cone, which can be A
estimated agf o cf'(do/dQ)vdQ~Fgvo, since the loss -
cone is small, and the integral over any isotropic function is ‘g
ST (do/dQ)vdQ~ [f(do/dQ)vdQ. As a result, Eq(14) g
simplifies to 2
o
|
Vxé,_x 8_ —v(fic—=Fo),
° 0 5 10 15 20
fie(x=—L/2)=0 for v,>0, Parallel energy (eV)
and C) p (mTorr)
fic(x=L/2)=0 for v,<O, (15 101 00.125
®0.25
= 00.5
wherev=vo. Equation(15) has obvious solutions g - fr— o
x  vdx 2 % -
fic(e,vy,X)=Fg 1—exp< _J—le v ) for v,>0, § ,., MQ. -
(169 5o T
L2 pdx
fic(e,vy,X)=F 1—ex;{—f —) for v,<0. 107 T T ~
x vy 0 10 20 30
(16b) Parallel energy (eV)
A similar solution was found for the electron-electron colli- kG 6. EDFf,.(e,|v,],x) at given total energy = — 1.5ed,, as
sion integral in Ref[33]. If we sample the EDF for both 4 function of the parallel energy at various coordinates. Solid lines
velocity directions; fi¢+(&,|vy],X)=[fo(e,vyx.X) T fo(e,  correspond to the theoretical estimafte.(e,|v,],x=0)="fo[1
—Vy,X)1/2, we find —exp(— f5A(vvdx/v,))], and dashed lines to the estimate with the

L2 % v total cross section replaced with the cross section of scattering
1—exd — f ) os vax outside the loss cone: o—ogc=/oLc(da/dQ)/dQ

o vy 0 |V = a(E)f‘éx minT](9,E)d cos; iso stands for isotropic cross section.
(160 (& p=0.125m Torr,(b) p=1 m Torr. (c) Distribution functions at

. discharge center. The wall potentials ared,=20.6eV for p
If the mean free path is larger than the gap/v<1, the —0.125mTor, —d,=16.4eV for p=0.25mTorr, —d,

EDF in thg LC is strongly depletefi.~ (vL/v)Fy<Fg. In —142eV for p=05mTorr, and —d,=12.4eV for p

the opposite case of a small mean free peltliv,>1, the  _1 70orr.

depletion in the LC is smali,;~F, due to the fast scattering

in elastic collisions. At the walf,...=F/2 due to the ab- ) _

sence of electrons with velocity directed from the wall to- C@lly do not depend on the form of the differential cross

ward the plasma. The loss cone is empty at the wall and geéectlons, also according to the predlctlons_ of thg theory, as

filled with electrons at distances of the order of the mean fredollows from Eq-L(/%GC)- The EDF mLt/Qe LC is spatially uni-

path according to Eq160). form: fic.=Fofg (vdx/|v,]) for [go(vdxX/|v,)<1. At P
Figure 6 depicts EDF’s outside and inside the loss cone=0.125m Torr, [§”?(vdx/|v,|)=0.066<1, and the EDF’s

calculated by the MC code. One can see that the theoretic@btained in the MC simulation at various positions coincide

prediction for a uniform EDF outside the loss cone is reasonwith each other. AP=1 m Torr, [5%(vdx/|v,])=0.80~1,

able within 20%, which corresponds to the approximation ofand the EDF’s in the LC at the discharge center are larger

a small loss coné\|.Q/47w<1. In Fig. 6, the EDF’s practi- than those at the periphery of the discharge.

flci(81|Vx|vX): Fo
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The analytical expression for the ratio of the EDF’s out-tional to the probability of scattering from the region outside
side and inside the loss conef.+(Xx=0)/Fy=[1 the loss cone to the loss cofi&l,34.
—exp(—f(L)’z(vdx/|vx|))] underestimates the value obtained Wall losses should be introduced into the averaged Eq.
in the MC approach. This is probably because of the assumgd2) according to
tion of a small loss cone: it was assumed that an electron
leaves the loss cone after scattering in any elastic collision. A — v L2 pdx
more comprehensive theory should be developed for a more Y Vescapt€)= fv Vx 1—exp( - f_ Lo Vs ) dv
thorough description. For an approximate accounting of this e
fact, we can change the total cross-section to the cross- gquation(12) describes the change of electron density

X+

section of scattering only outside the loss cone: with given total energyN(s)=/f(e,x)dv,dv,dv,dxs(e
_ —mv?/2+ed(x)). The rate of wall loss of electrons is given
o=J(do/d2)dQ— g, by wall flux v,f|,— . ,», and the total loss of particles with
=[o(da/dQ)dQ given total energy is

=o(E) [y ""I1(9,E)d cos®,
[aN(s)/at]|W:f f(e, = LI2)v,dv,

where nvZ . /2)—e®(x)=—ed,,. In Fig. 6 one can see

that such substitutiofcompare dashed lines with solid ohes dv,dv,8(e —mv?/2+ed,).

improves the agreement of MC results with this theory.

Knowing the EDF in the loss cone, the average frequencyntegration over the perpendicular kinetic energy yields the
of the electron losses to the wallgeqpbe), With a total ~ Previous result, i.e., EG18). In a plasma with a nonuniform
energye, can be found. First we consider the case with noPotential it is more convenient to integrate over the perpen-
electric field present in the plasma bulk, and then discuss thdicular energy[e, =m(v;+v})/2], since it is conserved
general situation. Integration of the fluxf,.(x=L) over all  during collisionless motion:
possible velocity directions at the wdll, dv,/2v yields the

average electron fluX,(g) of electrons with a given total _[eteew L/2
energve: VVescape™ 1—exp —

gye: 0 —LR2

v odvy JL/Z vdx \/ e+ed(x)
I'y(e)=2 —— VxFo| 1—exp — . 1 _ total
w(€) fVXmm 5y VxFo p( e v 7 “Vlsredro-s. Naooddx||de, /m.

where (nv?/2)—ed(L/2)=e is the mazximum velocity near  |n Fig. 7, EDF’s calculated using the averaged kinetic
the wall in front of the sheath;nfv /2)—e®(L/2)=  equation and the MC method are compared. Both EDF’s

—ed,, is the minimum velocity of electrons capable of over- agree well for energies up to< —2®,,. For higher energies
coming the wall potential and escaping and the factor of Zhe values of the EDF calculated by MC code are much

accounts for the two walls. The average escape frequency isigher than theoretical predictions. The reasons are not clear.
given by the ratio of the flux to the total electron density in Possibly the concept of diffusion in energy fails, since elec-
the plasma slab of a width, vegcape=1"(&)/(Fol): trons of these energies are not trapped and leave the dis-
charge with a frequency approximately equal to the bounce
_ Y dv, _ _ Lz vdx frequency. This implies that there are no longer many
Vescaph€) = UL Vx 1—ex . (18 b . . .
i —Li2 Vy ounces in the resonance region, and averaging over many
interactions with resonance is not adequate. Other reasons
In Eq. (18), losses at both walls are accounted for. If thefor the discrepancy mentioned above could be the numerical
mean free path is smaller than the gap, thHgr=F, and limits of the MC simulation, particularly the finite period of
Vescapgs)wfzx LnAvvLvy=(e+edy)/mvL, the average the random number generatRNG). This could be so in
flux to the wall isT",,= (& + e®d,,)/2mv)Fq. In the two-term spite of the good quality of the RNG used in the_ simul_atio_n
approximation this corresponds to the boundary condition apecause of the large range of EDF values under investigation

the plasma sheath boundary in the form (more than four orders of magnitudéVe discuss these ef-
fects elsewhere.
&Fo(s,x)| e+ed, For an inhomogeneous magnetic field, averaging should

5m Foleb). (190 be performed accordingly:

L/2
1—ex —J

—L/2
e+ed(x) otal
s+e<b(x)—,uB(x)>Naaea dx

X ]x:L

In Eq. (19), losses at the nearest wall are only accounted for {7 :2 J“”‘"‘X
the factor:. In Refs.[31,34], approximate boundary condi- eseapre = Jo
tions were used, which can be deduced from @&g)) if the
velocity projection is substituted for the absolute value of \/
velocity v,—Vv. Note that the boundary conditiof19) is

more appropriate as the correct one, and even more simple.

In the opposite case of a large mean free pathspbe) XB(iL/Z) q
=Jv, v/ (VL)v, L2 (vdxIvy) ~ v(A g4 is propor- 2m
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a) 4av2 (=
} no wall losses Rion(X,t) = m’ fecl:(x)ﬂ [NaVoion(e +ed(x))]
10" FM w MC
10-21 :N-lt-h-»:vall losses % FO(S) \/mds, (21)
1071 whereN, is the neutral atom densitys;,, is the ionization
101 cross section, antlis the ionization threshold.
3 The quasineutrality condition determines the ambipolar
‘; 10°4 potential
W 446] \
10 ", 4 (= 2
1071 v, Y Fole) Vi (8+e¢(X)))d8=ni(X)7 (22)
NTe —ed(x)
10° . - . L Yee
0 10 20 30 40 50 The boundary conditions are of the formb|,_,
e (eV) =0,(d®/dx)|x—o=0. The ion mean free path is much
smaller than that of the electrons, so we assume that the ion
b) mean free path is smaller than the discharge width. In the
no wall losses general case the ion kinetic equation should be solved. The
10" & —FM v MC ion continuity equation reads
with wall losses Uw=12.4
1079 &ni aniui
10°1 Tt T o~ Rion(X), (23
§~ 109
2 10°1 whereR;o(X,t) is the ionization rate. For the determination
L. of the ion velocity we use the nonlinear ion mobility taken
2 17 from Ref.[12]. The boundary conditions have to be applied
1071 at the sheath boundary;(+L/2)=ug=\T./M, whereT,
10°1 =—(dIn f/ds);j_w(uz); we used the generalized Bohm cri-
10° terion for an arbitrary EDF14,35.
0 The electron kinetic equatiorgll) taking account of
e (eV) losses to the walls and electron-electron collisions, reads
FIG. 7. The EDF’s calculated from the averaged kinetic equa- _ dF0(8)>
tion (lines and by the MC methodsymbols as functions of the —— | [vD.(e)+VD,ed€)]
total energy with account for wall lossédashed lingsand without de de
account of wall losses(solid liney; E, =0.7Vicm. (a) p d
=0.25m Torr, —®,=16.4eV, (b) p=1 mTorr, -®,=14.2eV. ~de (VVed€)Fo(e))
where the sum is taken over the Iéft) and right(+) loss —
cones, andu,,=m(e+ed,)/B(£L/2). = 7| VVescapé" Ek vvic(e) [Fole)
VIIl. SELF-CONSISTENT FAST MODELING OF + 2 Vi (e +el)Fo(e+e),
ELECTRON CYCLOTRON RESONANCE DISCHARGE
WITH THE USE OF ELECTRON BOLTZMANN mv3 . v
KINETIC EQUATION AVERAGED OVER FAST (We)ee= 55 sqwee(v,x)f de — Fo(e),
ELECTRON BOUNCING AND PITCH-ANGLE n(x) ebx) M
SCATTERING 3 3
47 mv & \
In this section we summarize previous results and present (VDe)ee:? n(x) Ved V., X) J_e¢(x)d8 m Fo(e)
a full system for the modeling of ECR discharges. Examples
of calculations will be given at the end of this section. VAR
The self-consistent set of equations is very similar to the Y J de Fo(e) |, (29)
one we used for the modeling of capacitively coupled plas- °
mas[12]. To obtain a complete set of equations, it is necesynere
sary to determine electron density and ionization rate via the
EDF: ved V,X)=[4me*n(X)IN A gel/m?v3,
v=\/(2/m)(c —ed(x)),
A (= \/ 2
m jefb(x)FO(S) (E (8+e¢(x)))da—ne(x), and InAge is the Coulomb logarithm, ank enumerates in-

(20 elastic processe®xcitation and ionization
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FIG. 8. The EDF's as functions of the total energy calculated from the self-consistent set of eq(#atiofite ECR resonance is in the
discharge center.

ionization cross section, anff®~"?P(W,E)dW=1. Prog-
eny electrons have lower energy than primary electrivis,
<(E—1)/2, by definition. According to the Pauli principle,

[{ L2 electronsE is the energy of the primary electrom,,,, is the
l-—expg — j

M max
V Vescapé™ Z j
=+ 0

o

—L/2

8+eq)(x) total
&+ ed(x)— ,uB(x)) Nacea X

which electron was primary. For example, in RES6] the

B(*L/2) probability function was taken in the form
X—5—du,
2m B
P(W,E)= :
where the sum is taken over left-) and right (+) loss (W2+Bz)arcta+E}
CONES, U max=M(e+ed,)/B(=L/2), 2B
47w (eE¢)? and B was set to 10 eV. ForH—1)<2B we obtain
<VD)£=? q , P(W,E)=2/(E—1), which is uniform in the energy of prog-
m bkt 2me eny electrons. For E—1)>2B we obtain P(W,E)
dx ~1/26(W), i.e. all progeny electrons are created at low en-

electrons are not distinguishable, so we cannot differentiate

ergies. Summing all possible income channels, the rate of

and the upper bar denotes only averaging in the coordinate BPoduction of slow electrons with enerdy is
constant total energy:

[

Ps (W, E)\2E/mvo(E)Fo(E)dE,
+1
(25

Rion(W) = J

€

Glv)= f ::(S))dx G V2(e + ed (x))m].

The last term on the right-hand side of EQ4) describes wherev,,,=Vv iy, is the ionization frequency, and
the production of slow electrons in inelastic collisions. In the
ionization processes two electrons are created so the ioniza-
tion income term is a bit more complicated than the one for
excitation. We assume that progeny electrons are born ac-
cording to the probability distribution functiors(W,E) is the probability for an electron with kinetic ener@yto
=o,n(E)P(W,E), whereW is the energy of the progeny create an electron with kinetic energyFor example, for the

P(W,E), W< (E—1)/2

PZ(W,E):[p(E—I—W,E), W>(E—1)/2
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TABLE I. The effective temperatures, wall potential, two-thirds Fortunately the last factor in brackets, (D, /Bdu)
of the mean electron energy, potential at the plasma-sheath bound- wecEf/|dB/dx| is a constantThe power deposited into
ary, and the potential drop in the sheath at a low power density. the discharge per unit area is determined only by the plasma
density, the electric field amplitude, and the derivative of the
magnetic field in the resonance point, and does not depend

P o) Og Ten Py Ty (D= D@y)/4T Fo(P,)

(mTom (eV) (eV) (eV) (eV) eV (eV) Fo(®s) on the EDE form
1 50 38 6.6 207 22 3.6 39 Thus the self-consistent description of the ECR discharge
10 40 75 48 174 14 21 50 is completed. The full set of equations includes the electron
30 36 91 36 167 1.1 16 5g  Kinetic equation(24), the ion continuity equatio23), and

the ionization source term in the form of EQ1); the equa-

tion for the sheath potential equati¢26); the power depos-
simplest case when both primary and progeny electronied in the discharg€Eq. (27)]; and the quasineutrality con-
are assumed to be born with the same energylition represented by Eq422).

3(E-1), PW,E)=28(W—(E—1)/2) and R (W) In Fig. 8, the EDF evolution versus discharge power den-
=4\2(2W+ 1) /mv;o,(2W+ 1) Fo(2W+1). sity is plotted for three pressures—1, 10, and 30 m Torr. One

The wall potential is to be found from the balance of thecan see that at low discharge power densities the EDF’s are
ion and electron fluxes to the wall'e, =T, : similar. At higher powerg~10 W/cnf) the EDF’s approach

a Maxwellian shape due to the influence of electron colli-
4 (= _ sions. At lower powers the EDF is strongly non-Maxwellian.
”(L/Z)UBZH f_eq)(X)FO(S)VVescapés)ds' (20 The abrupt drop in the EDF’s due to losses to the walls starts
at the energy of the wall potentiab,,. The corresponding
The electric field in the resonance point can be related to thelope of the EDF is characterized by an effective temperature
total power dissipated in the discharge. The easiest way t®.4(e)=(dIn[Fy(e))/de) ! and is presented in Table | for
calculate the power density is to integrate the electron-wavéwer powers, i.e., where all EDF’s are similar. As can be
interaction integral in the form of Eq(5): integration seen, for lower pressur&.(—ed,,) increases, which is a
(Um)fdudv, (s —ed)[dx B(x)SFSR(f) yields the total common property of all discharges. The effective tempera-
power density deposited into the discharge. After two partiature in the tail is about three times lower than two thirds of
integrations, the average kinetic energy. In the case of a Maxwellian EDF
they should coincide. The large difference indicates the im-
v (i D ) portance of accurate calculation of losses in the EDF tail.
Mop —# In Fig. 9 the EDF’s depicted for the case of ECR reso-
aDM)
I
1mTorr, 8mW/cm?, L=20cm

1
P= E f d,LLdV”FO

nance are shifted from the center toward one of the walls at
27) one-fourth of the gap. The electrons trapped in the potential
well in the center are not heated and have a very low tem-

=n(X;)| By

1mTorr, L=20cm

------- resonance in center esonance at x=5cm
resonance at x=5cm 10" r x= .
. 2048 numbers - power W/cm
“-’E 10
9 | _ — 0.256
210 X, =5¢cm " 10°
3 § 0.064
> 8 10°
3 % 10 0.008
R w 10
o | N7 o
w g
\ -
X =0cm 10°
108 A 1 N 1 A 1 ] ,
+ 1 1 ) FIG. 9. The EDF's as func-
0 1 2 3 4 5 s 10 20 30 -
e (eV) e (eV) tions of the total energy calculated
from the self-consistent set of
10mTorr, 32 mW/em’, L=20cm 10mTorr, L=20cm equations (24). The ECR reso-
___:z:‘;:::zz:;‘:ffe“: resonance at x=5cm nance is shifted to one-fourth of

numbers - power W/em® the gap.

X o = 5 cm (15¢cm)

€ (eSV) 10 t (eV)
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perature, determined by the energy exchange in electromwith pressure, since the temperature in the EDF tail also
electron collisions with other electrons, energetic enough tancreases.

reach the ECR resonance. For a higher plasma density the The potential drop in the sheath—the difference in the
energy exchange is more effective, so the cold part of thevall and sheath potentiab,,— ®—appears to equalize the
EDF approaches the main part. In contrast, at low powers thelectron flux to the wall(in the case of Maxwell EDF
temperature of the cold electrons can be as low as room(L/2)\T./27m) and the ion fluxn(L/2)yT¢/M. For a
temperature, similar to the case of the negative glow in aMaxwellian EDF it yields ®,,—®y=1/2e T, In(M/27m)
direct current discharge or an afterglf87]. The presence of =4.7T /e for argon. In reality the EDF is not Maxwellian

cold electrons was observed experimentf88], and will be
considered in Sec. IX.
The central plasma density, wall potenti),, the mean

and not even isotropic. For example, as can be seen from
Table |, the electron temperature can change by a factor of 3
in the range-e®d y<e<—ed, . At not very low pressures,

electron energy, the potential at the plasma-sheath boundawhen the electron mean free path is smaller than the gap, the
®g,, and the potential difference in the shedif—®g,are  loss cone is “filled” and the EDF is close to isotropic; see
shown as functions of the power density in Figs. 10 and 11Sec. VII. So we can expect &Z(—ed,)<e|d,— Dy
Since the EDF form changes only slightly at low powers, the<4.7T (—ed), as can be seen in Table I. In the case of a
wall potential, the potential at the plasma-sheath boundaryvaxwellian EDF the ratio of EDF's Fo(—edg)/F,

and the mean electron energy do not vary much with power,—ed, ) is VM/2mm=111 for argon. Due to a large varia-

and the plasma density is proportional to the power densitytion of the effective temperature this ratio is smaller by a
The sheath potential is governed by the ratio of the centrafactor of 2—3 for EDF's in Figs. 8—11; see Table I.

and boundary densities, and decreases with pressure accord-
ing to Bohm’s criterion. The effective frequency of wall
losses[see Eq.(24)] is typically higher than the ionization
frequency at these low pressures. The total electron flux to
the wall and the total number of ionizations are equal to the We compared the FM results with optical measurements
ion flux to the wall[Eq. (26)]. This implies that the wall of the EDF’s in an ECR nitrogen dischar{@9] driven by
potential is higher than the ionization potential and increasemicrowaves at a frequency of 9.7 MHz, a pressure of 2.4

IX. COMPARISON OF EXPERIMENTAL DATA
AND FM RESULTS
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measured in Ref.2] and calculated by the FM method at a power

: ; 0n~m-3
%105 Torr, and a power of 100 W2]. Unfortunately the density of 0.141 W/cfand a plasma density of 4a10*°cm™2,

radial distribution of the microwave power density was nc),[For comparison, the number of calculated EDF’s are presented for
. . . P Y various cases: artificially increased losses due to vibrational excita-
reported in this experiment, so we could not perform a de

i . th th it ” i hat i tion (100 time$; the power scaled up ten times; power and plasma
tailed comparison with the self-consistent modve@mg. That IStjensity decreased 30 times; and a resonance point positioried at
why we assumed an average value of 0.141 W/ton the =L/4. (b) Calculated EDF at a pressure of 1 m Torr and a power

density per unit area, and the collisionless linttie ion  per ynit area of 1.4 Wich
mean free path is larger than plasma )giap the axial profile

of the plasma densityf14]. The plasma density of 4.0 . L .
X 101cm2 was taken from the experiment. The comparison'memhange energy among electrons with different energies.

is shown in Fig. 12. As can be seen, there is a Sa“SfaCtoggrt,etﬁga?c?rﬁat%rt]hifeggfgye:gif:,snéni;hfng'rt:ig?,gféﬁzcztna'
agreement with the EDF slope in the tail, but a considerabl

difference in the low-energy part. The most probable rea\songltrogen than in noble gases. We have periormed seli-

for this are the more complicated power deposition than whafsogj'éitemlgj?]lcglr?g?gjn%f trl?(lajfi) rsmagtignpcr)?izlljéeeI?efctlroTsTiﬁrr
is introduced in the model, and the radial inhomogeneity o 9. !

data. The Doppler shift effect can be important for a propen P y

modeling of the wave-particle interaction at high power den-OW Pressures of 10 Torr, _and start to be important only if
sities[20]. artificially increased 100 times. Therefore, the actual reason

éor the formation of a large fraction of cold electrons in

To show the great influence of different processes on th ) .
experimen{ 38] remains unclear.

EDF, we performed a number of calculations while varying
power, plasma density, point of resonance, etc. Both calcu-
lations with the resonance in the center and with the reso-
nance shifted to the periphery give the same results for the
given density due to an effective energy mixing in the An electron Boltzmann kinetic equation averaged over the
electron-electron collisions. We scaled down the power andiast electron bouncing and pitch-angle scattering was derived
plasma density in order to investigate the possibility of for-in order to develop an effective and operative tool for the fast
mation of cold electrons when the ECR resonance is shiftechodeling(FM) of low-pressure ECR discharges. An analyti-

to one-fourth of the discharge length, i.e., out of the assumedal solution for the EDF in a loss cone was derived. The

minimum of the electron potential energy at the dischargevalidity of the fast modeling method has been proved by a
center. As can be seen from Fig. 12, the cold electrons apomparison with Monte Carlo simulations. The complete

pear only at a considerably decreased plasma density—3fystem of equations for FM is presented and ready for use in
times lower than the experimental value—because at larga comprehensive study of ECR discharges. The variations of
plasma densities the electron-electron collisions effectivelyplasma density and of wall and sheath potentials are ana-

X. CONCLUSIONS
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lyzed by solving a self-consistent set of equations for thecal Simulation of Pulsed, Radio-Frequency and Magnetron
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