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Electron Boltzmann kinetic equation averaged over fast electron bouncing and pitch-angle
scattering for fast modeling of electron cyclotron resonance discharge

I. Kaganovich,1,* M. Mišina,2,† S. V. Berezhnoi,3,‡ and R. Gijbels2,§

1Department of Chemical Engineering, University of Houston, 4800 Calhoun Rd., Houston, Texas 77204-4792
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The electron distribution function~EDF! in an electron cyclotron resonance~ECR! discharge is far from
Maxwellian. The self-consistent simulation of ECR discharges requires a calculation of the EDF on every
magnetic line for various ion density profiles. The straightforward self-consistent simulation of ECR discharges
using the Monte Carlo technique for the EDF calculation is very computer time expensive, since the electron
and ion time scales are very different. An electron Boltzmann kinetic equation averaged over the fast electron
bouncing and pitch-angle scattering was derived in order to develop an effective and operative tool for the fast
modeling~FM! of low-pressure ECR discharges. An analytical solution for the EDF in a loss cone was derived.
To check the validity of the FM, one-dimensional~in coordinate! and two-dimensional~in velocity! Monte
Carlo simulation codes were developed. The validity of the fast modeling method is proved by comparison
with the Monte Carlo simulations. The complete system of equations for FM is presented and ready for use in
a comprehensive study of ECR discharges. The variations of plasma density and of wall and sheath potentials
are analyzed by solving a self-consistent set of equations for the EDF.

PACS number~s!: 52.50.Gj, 52.65.Ff, 52.65.Pp
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I. INTRODUCTION

In recent years, low-pressure, high-density plasma sou
have attracted considerable interest for application in m
rial processing, e.g., etching, deposition, etc.@1#. One of the
possible mechanisms for plasma generation in these sou
is electron cyclotron resonance~ECR! heating. Typically, the
operating gas pressures in ECR reactors range from 1025 to
1022 Torr. Correspondingly, the electron mean free path
be larger than or comparable to the discharge dimens
~typically several tens of centimeters!. Under these condi-
tions, the electron distribution function~EDF! is far from
Maxwellian, and can be enriched by slow electrons@2#;
moreover, the EDF can have a pronounced high-energy
@3#. A non-Maxwellian EDF is associated with a number
nonlinear phenomena of the discharge self-organization.
high-energy electrons determine the dissociation and ion
tion rates. The slow electrons are responsible for the for
tion of the ambipolar potential in the plasma bulk. It w
demonstrated@4# that the formation of a two-temperatur
EDF can be accompanied by an explosive generation of
bulk plasma density. The distribution of electron temperat
in the direction transverse to the magnetic field effectiv
influences the plasma profile@5#. Since the EDF form is of
primary importance in low-pressure discharges, it is nec
sary to solve the kinetic equation for the electrons even fo
qualitative description of such discharges. For these reas
the EDF in ECR discharges should be fully address
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Mechanisms of the formation of non-Maxwell EDF’s we
investigated in detail experimentally and numerically, main
in capacitively and inductively coupled plasmas@6,7#, and in
dc discharges@8#.

A natural approach to the modeling of discharges at l
pressures is the use of the particle-in-cell~PIC! computer
simulation along with the Monte Carlo~MC! technique@9#.
However, the enormous range of the spatial and temp
scales precludes a straightforward application of the PIC
MC methods to the self-consistent modeling of discharg
The highest characteristic frequency is the electron plas
frequency vep;1010s21, and the electron cyclotron fre
quencyvec;1010s21, whereas the ion residence time in th
discharge is about 1024 s. The characteristic spatial scales
the Poisson equation, i.e., the Debye radiusr d and the sheath
thickness, are about 1 mm, whereas the discharge dim
sions are 10–30 cm. To eliminate small spatial and temp
time scales, one has to use the quasineutrality condition
stead of the Poisson equation. The PIC with MC treatmen
collisions and the quasineutrality equation for the elec
field were combined for the self-consistent modeling of
ECR discharge in Refs.@10,11#. Electrons were treated b
the guiding center approximation. This approximation e
cludes the electron gyro time scale from the dynamics. T
fastest temporal scale left in this scheme is the elect
bounce timetb;L/ve , which is about 100 times shorter tha
the ion lifetime*L/v i .

An averaging procedure is needed to avoid resolving
time scale of the electron bouncing. A natural approach is
model the discharge using a space-time-averaged kin
equation. This approach allows one to perform simulatio
for a wide range of parameters and even simultaneously w
experiments. Moreover, one can analyze in detail com
cated interactions of different physical processes, which
not possible otherwise@4#.
1875 ©2000 The American Physical Society
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The kinetic analysis of the self-consistent motion of ele
trons and ions in capacitively coupled plasma~CCP! dis-
charges has been reported earlier@12#. It is based on the
theory developed in Refs.@13,14#. Fast modeling~FM! for
the case of an inductively coupled plasma~ICP! was pre-
sented in many papers~see, e.g., Refs.@15,16#!. The success
in the modeling of CCP and ICP has encouraged us to
velop a similar method for ECR modeling.

The kinetic equations averaged over electron bounc
were derived for an EDF study in ECR discharges in sev
papers@17,18,19#. In all these papers pitch-angle scatteri
due to collisions with neutrals was neglected. The results
MC modeling@20# and theoretical estimates@14# show that
the largest part of the electrons should be trapped in an e
trostatic potential well. As a result of the long residence ti
in the potential trap, exceeding the electron-atom collis
time, the EDF is close to an isotropic function even thou
the electron mean free path can be large compared to
discharge dimensions.

For the calculation of the EDF in ECR discharges, in t
paper we present an electron Boltzmann kinetic equa
~zero dimensional in space, and one dimensional in ene!
averaged over fast electron bouncing and over elastic c
sions, which is similar to what was done in Refs.@12–16#.
An analytical solution for the EDF in the loss cone is d
rived. The validity of the FM method is proved by compa
son with Monte-Carlo simulations~one dimensional in
space, and two dimensional in velocity!. Examples of self-
consistent simulations are shown in Sec. IV.

II. DESCRIPTION OF THE MODEL

The developed theory is applicable to a wide range
conditions. However, to be more specific, we consider a c
ventional ECR source with a microwave frequency of 2.
GHz. The electron resonance occurs at a magnetic field e
to 875 G. We assume that the magnetic field is monoto
cally decreasing~known as a magnetic beach!, so that there
is only one point of resonance. The pressure is taken in
range of 0.1–10 m Torr. The background gas is argon.
axisymmetric chamber of a widthL520 cm was considered
All electron drifts are azimuthal because of the symme
The electron gyro radius is extremely small~,0.1 mm!.
Thus electrons are tied to a fixed flux tube. Furthermore,
may assume that the electron motion is one dimensio
since the azimuthal motion can be ignored in the cylindri
geometry.

The averaged electron energy is determined from a
ance of the ionization and particle losses, and is typicall
few eV. This implies that the ambipolar potential should a
be of the order of several V. The plasma density varies fr
109 to 1013cm23 in ECR discharges. The amplitude of th
electric field in the wave is a few eV/cm. The main intera
tion of electrons with a wave in the resonance region is
fined by vec[@eB(x)/mc#5v, where v is the wave fre-
quency,B is the magnetic field,m is the electron mass,e is
the elementary charge, andc is the velocity of the light in a
vacuum. Electrons effectively gain or lose energy from or
the wave, until the phase of the gyration and the wave ph
depart*„@eB(x)/mc#2v…dt;p @1#. This implies that the
electrons with parallel velocityv i interact with a wave effi-
-
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ciently during a timet r5A2p/Av iudvec/dxu and within a
distance dxr5A2pv i/Audvec/dxu. Under the conditions
discussed,dxr;1 cm!L and the resonance region can
considered as narrow. The change in energy after passin
resonance zone ~a ‘‘kick’’ ! is D«'[mv'Dv';
6(eE'v'dxr)/v i), wherev' is the perpendicular velocity
andE is the amplitude of the wave electric field, and is of t
order of 1 eV/cm. Since the kick in energy is much smal
than the energy itself, the series of subsequent kicks ca
described as a diffusion in the energy space.

III. ELECTRON-WAVE INTERACTION
IN THE RESONANCE POINT

In this section we shall briefly summarize the main resu
of the electron interaction with a wave in the resonant po
The nonrelativistic equation for the complex perpendicu
velocity v'5vz1 ivy reads

d

dt
v'1 ivecv'52

e

m
E'e2 iww~ t !, ~1!

whereE' is the amplitude of the wave electric field,ww is
the phase of the wave, anddww /dt5v. The integration of
Eq. ~1! from the time-T to the timeT yields @21#

v'~T!5@Vp~T!1v'~2T!#eiwg~T!, ~2a!

where wg(T)5*2T
T @eB(x)/mc#dt1w0 is the phase of the

electron gyration, and

Vp~T!5
e

m
E'E

2T

T

ei „w~ t8!2ww~ t8!…dt8 ~2b!

is the change in velocity due to the interaction with the el
tric field of a wave. The maximum contribution in integr
~2b! is at the point of resonancet50, dww /dt5dwg /dt. The
absolute velocity ofuVpu nearly does not vary when the ele
trons pass resonance for times longer than the interac
time t r . This means that the timeT can be extended to in
finity;

Vp5
e

m
E'E

2`

`

ei „wg~ t8!2ww~ t8!…dt8'
e

m
E't r ,

where

t r5E
2`

`

ei „wg~ t8!2ww~ t8!…dt8'eu iE
2`

`

eiwg9t2/2dt

5AS 2p

wg9
D 9ei ~u7p/4!,

u5wg(0)2ww(0) is the difference of the electron gyro ro
tation phase and the wave phase at the moment of reson
vec5v, wg95(dvc /dx)v i ; the minus sign corresponds to
positivewg9 , and the plus sign to a negativewg9 .

From Eq.~2! one can find the energy change in the res
nance in forms@21#

«'~n11!5«'n1«p12A«'n«p cos~un117p/4!, ~3a!
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un115un1E
Tn

Tn11S eB~x!

mc
2v Ddt, ~3b!

where «p[(m/2)uVpu2, and n denotes subsequent intera
tions at momentsTn . The integral *Tn

Tn11
„@eB(x)/mc#

2v…dt denotes the number (2pN) of rotations with angle
velocity (vec2v) during one bounce of electron along th
discharge. If the magnetic field variation along the discha
is not too small,vec2v;v, we can estimateN;tbv/2p,
where tb is the bounce period. Under our conditions,N
;1000. Analyzing mapping~3!, one can find a condition fo
an instability of the trajectory («'n ,un). The trajectory in-
stability leads to a stochastic motion. A rough criterion co
sists in the following condition@22#: The motion is stochastic
if the kick in energy in the resonance results in a variation
the next phase by more thanudun11u.p or udNu.1/2. The
electrons move along a magnetic line in an effective pot
tial 2eF(x)1mB(x), whereF(x) is the electrostatic po
tential andm5mv'

2 /2B is the first adiabatic invariant, with a
constant total energy« i50.5mv i

22eF(x)1mB(x). The
values of« i ,m characterize the trajectory and, correspon
ingly, the number of rotations. A variation in the perpendic
lar energy changes values of« i , m, andN, respectively. So
the criterion for stochastic motion can be written in the fo

U]N~« i ,m!

]«'

D«'U.1/2, ~4!

whereD«'5«p12A«'n«p cos(qn117p/4). SinceN is very
large ~;1000!, even a small dependence ofN on « i ,m will
result in a stochastic motion. Thus in what follows we sh
assume that criterion~4! is fulfilled, and consider a value
un11 as independent from the previous oneun . In other
words, the phases of subsequent interactions are assum
be random. The more complicated case, when criterion~4! is
not valid, was considered in a number of papers; see,
Ref. @22#. In this case stochastization can occur due to
pitch-angle scattering@23,24#.

Under the assumption of random phases of subseq
interactions, the integral describing electron interaction w
the electric field can be modeled by a diffusion in the ma
netic moment. The exact derivation can be found elsewh
see, e.g., Refs.@18,19,22,23#. The most efficient method o
derivation was proposed in Ref.@25#. Considering times
longer thant r and distances larger thandxr , the electron-
wave interaction integral can be written in the form@25#

St
ECR~ f !5v id~x2xr !

]

]m
Dm

] f

]m
, ~5!

Dm50.5̂ ~Dm!2&5
mecE'

2

B

p

v iUdB

dxU
, ~6!

where angular brackets denote averaging over phasesun . It
is presumed that the kick in the perpendicular energy is sm
compared with the energy.
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IV. AVERAGING PROCEDURE OVER FAST ELECTRON
BOUNCING AND PITCH-ANGLE SCATTERING

FOR TRAPPED ELECTRONS

We start from the stationary electron Boltzmann kine
equation in the drift approximation for the distribution fun
tion f (v i ,m,x):

v i

] f

]x
1S e

dF

dx
2m¹BD ] f

]v i
5St~ f !1St* ~ f !1St

ECR~ f !,

~7!

wherei and' symbols denote the directions along and p
pendicular to the magnetic field, respectively,St( f ) is the
collision integral for elastic collisions with atoms,St* ( f ) is
the collision integral for inelastic collisions with atoms, an
St

ECR( f ) is the integral describing electron interactions w
the wave electric field in the resonance point. The EDF
normalized according to

n~x!5E f ~v i ,m,x!dv iv'dv' . ~8!

Note that the distribution functionf (v i ,m)dv idm corre-
sponds to a linear density of electrons along magnetic li
ndS/dS0 , wheredS is the area between neighboring ma
netic surfaces. The magnetic flux is constant, soB(x)dS(x)
5B0dS0 and the linear density scales asnB0 /B(x). Let us
consider the case of a monotonically increasing magn
field. Due to the conservation of the magnetic moment
and energy, particles with low energy cannot penetrate
the regions with higher magnetic field. In a currentle
plasma one can expect that the linear density of partic
along a magnetic tube is smaller there. Nevertheless, the
ume densityn is uniform for isotropic EDF. The uniform
Maxwell distribution function

f 5nS m

2pTe
D 3/2

expS 2
mv2

2Te
D

5nS m

2pTe
D 3/2

expS 2
mv i

21mB

2Te
D

is a solution of the kinetic equation~7! without collisions on
the right-hand side and the density is uniform, independe
of the magnetic field configuration.

Substituting the expression for the integralSt
ECR( f ), the

kinetic equation~7! reads:

v i

] f

]x
1S e

dF

dx
2m¹BD ] f

]v i
5St~ f !1St* ~ f !1v id~x2xr !

3
]

]m
Dm

] f

]m
. ~9a!

Further simplifications are possible by averaging over
fast electron bouncing. The total energy« i50.5mv i

2

2eF(x)1mB(x) is conserved, so it is natural to perform
transformation from variablesv i ,m to the new variables:
longitudinal energy« i ~for the particular case of an ECR
discharge the total energy coincides with the longitudi
energy!, andm. In new variables, Eq.~9a! reads
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v i

] f

]xU
«

2St~ f !5St* ~ f !1v id~x2xr !S ]

]m
1

B]

]« D
3DmS ]

]m
1

B]

]« D f , ~9b!

We consider a low-pressure discharge where the bounce
quency is higher than or comparable with the collision f
quency. The opposite case can be easily studied by a
term approximation. We focus on the time scale of the E
evolution, which is governed by the inelastic collision fr
quency n* . In most gasesn* !n. As we shall see, the
electron-wave interaction integral can be estimated
uSt* ( f )u&n* f in the stationary state. This means that t
terms on the left-hand side of Eq.~9b! are much larger than
the terms on the right-hand side. The isotropic, uniform E
in total energy equalizes the large terms on the left-hand
of Eq. ~9b! to zero. Thus, when the conditionsn@n* and
v/L@n* are applicable, the EDF satisfiesf («,x,t)
'F0(«). In other words, the total energy is practically co
served during electron bouncing between turning points
scattering in elastic collisions. The assumption that the E
depends solely on the total electron energy« proves to be
suitable for an adequately accurate description of the elec
kinetics. In comparison toF0(«), the coordinate-dependen
parts of the EDF are small corrections of the order
(n* /n),(vL/n* )2 @26#.

To find F0(«) we need to perform averaging of Eq.~9a!
over the coordinate and the velocity angle. To do so, i
natural to rewrite Eq.~9a! in an integral form

E E E „2St* ~ f !…dV52 R E GW dSW , ~10!

wheredV5B(x)dx dm dv i is the phase volume,GW 5v i f eW x
2v id(x2xr)Dm„eWm(]/]m)1eW «(]/]«)…f is the flux of EDF
across boundaries of the phase volume. We can integrate
~10! over the phase volume limited by two neighboring v
ues of total energy:« and«1d«. We assume, first, that th
energy is lower than the wall potential, so that the electr
are trapped in a potential well between turning poi
corresponding to m50 and v i50: X6(«), where «
52eF(X6). The phase volume is

DV5E E E «,«~x,m,v II !,«1d«B~x!dxdmdv i

5~d«/m!*X2~«!

X1~«!vdx,

where v is the absolute value of the velocity:v
5A2„«1eF(x)…/m. There are no fluxes across the coor
nate boundariesX6(«), since the electrons are trapped. T
only remaining flux is due to the diffusion in the energ
space. Assumingf (x,m,«)'F0(«), we find

R
«,«~x,m,v II !,«1d«

GW dSW 5dG«~«!,

whereG«(«)52^vD̄«&@dF0(«)/d«#, and ^vD̄«& is the en-
ergy diffusion coefficient averaged over the space-pitch s
tering angle:
re-
-
o-
F

s

F
e

d
F

on

f

s

q.

s
s

-

t-

^vD̄«&5E E E D«~x,m,v i!d~«2«~x,m,v i!!Bdxdmdv i

[E
X2~«!

X1~«!

dxE
0

v imax
D«~x,m~«,v i!,v i!dv i , ~11!

where v imax[v5A2„«1eF(x)…/m, Bm(«,v i)5«1eF(x)
2mv i

2/2, andD«5v id(x2xr)B
2Dm .

As a result we obtain the traditional kinetic averag
equation in the nonlocal approach@27#, ^St* ( f )&
1^St

ECR( f )&50 where double averaging is produced a

cording to^Ḡ&5*x(«)
x1«

dx*0
v imaxdvi . We assume that the reso

nance point coincides with the coordinate of the poten
minimum, the opposite case will be discussed later. The
eraging of^St

ECR( f )& is especially simple for the ECR dis
charge due to thed function in Eq.~5!. Integration overv i

andx gives the simple answer

^St
ECR~ f !&5~d/d«!^vD̄«&~d f /d«!,

and the averaged kinetic equation reads

d

d« S vD«~«!
dF0~«!

d« D
5(

k
vnk* ~«!F0~«!2(

k
vnk* ~«1«k* !F0~«1«k* !,

~12!

where

^vD̄&«5
4p

3

~eE'«!2

mUdvB

dx UA2m«

,

and the upper bar denotes only averaging in coordinate, s
the averaging of inelastic frequency in velocity angle
trivial:

^nk* &5E
X2~«!

X1~«!

dxE
0

v imax
dv ink* 5E

X2~«!

X1~«!

dx vnk* [vnk* .

V. MONTE CARLO SIMULATION OF THE ELECTRON
VELOCITY DISTRIBUTION FUNCTION IN THE

ECR DISCHARGES

To verify the analytical results, we have developed a M
model of the ECR discharge, which is one dimensional
space and two dimensional in velocity. The electrons
moving in the stationary electric field with potentialF(x)
and magnetic fieldB(x) through the discharge of a lengthL.
There is an electron cyclotron resonance zone in the mid
of the discharge, where the electrons experience a cha
D«' ~a ‘‘kick’’ ! in the perpendicular energy according to E
~3!, with a random phaseu.

The electrons are either absorbed or reflected at
boundaries depending on the magnitude of their parallel
netic energy compared to the prescribed wall potential.
cross sections were taken in the forms(q,E,E1)
5P(q,E1)s(E), whereE is the electron energy before co
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lision s(E) is the total cross section,E1 is the kinetic energy
after the collision~i.e., with the energy loss deducted! in eV,
and the dependence on the scattering angleq was adopted
from Ref. @28# in a form

P~q,E1!5
E1

2 ln~11E1/2!~E1 sin2q/21 l !
. ~13!

The elastic and excitation collisions of the electrons w
argon atoms are incorporated into the model. The data f
Ref. @29# were fitted to obtain the total elastic cross sect
in cm2:

sel~E!55
1.5310216, for E<0.08 eV

10216exp~y1! for 0.08 eV<E<16 eV

y2 for 16 eV<E<100 eV

5.9013102153E20.5443 for E>100 eV,

where

y2510215
†4.6581Eˆ20.207311023E$4.50611022

3E@24.97411022E~2.68425.61331023E!%#‰‡,

y15„0.16551xˆ1.6131x†20.07181

1x~20.38251x$0.13391x@0.04361

1x~20.012972x0.001541!#%!‡‰…,

x5 ln(E); andE is the electron kinetic energy in eV. The fi
for E.100 eV is from Ref.@30#.

The excitation only to one level of 11.5 eV is consider
using the cross section in a simplified form given by

sexc~E!55
0 for E<11.5 eV

7310218~E211.5 eV! cm2 eV

for 11.5 eV<E<20 eV

5.95310217 cm2 for E>20 eV.

The discharge length is divided into a regularly spac
grid. The electrostatic potential and magnetic field are
fined on the grid. A test electron is started with initial par
lel and perpendicular energies of 1 eV. We used a spatial
technique, instead of the conventional temporal one;
e.g., Ref.@31#. It implies that one step of the simulatio
consists of moving the test electron from a grid point to
next spatial grid point. Next an appropriate bin of the dis
bution function in the total energy~«! and in the first invari-
ant ~m! is incremented by unity, and the elapsed time is
creased by the time of flight between the grid points. T
collisions are treated by the null-collision technique. If t
time remaining until the next collision is smaller than t
time of flight between the grid points, the position of th
collision is found, the kind of collision is determined, th
velocity scattering and energy loss are performed upon
test electron, and a new collision time is sampled from
exponential distribution using maximum collision frequen
and a random number. The integration then continues f
the position of collision. When the electron is lost at t
boundary, a new electron is started with the initial positi
m

d
-

-
C
e,

e
-

-
e

e
e

m

and energies determined using the distribution function
corded so far. The procedure is continued for a total ti
long enough to get obtain sufficient statistics in the distrib
tion function over the range of energies of interest. Fina
the distribution function in the total energy and the first i
variant are recalculated to the velocity distribution functi
as functions of parallel and perpendicular energy. It is
pected that our spatial MC technique is faster than the t
poral MC technique~steps in time rather than space a
made! for large mean free paths, when collisions within o
step on the spatial grid are rare. In the opposite case,
traditional temporal technique is more appropriate.

VI. VERIFICATION OF ELECTRON BOLTZMANN
KINETIC EQUATION AVERAGED OVER FAST
ELECTRON BOUNCING AND PITCH-ANGLE

SCATTERING BY COMPARISON WITH MC RESULTS

Since we intend to analyze only electron kinetics in th
section, we restricted ourselves in these simulations to
case of a fixed ambipolar potentialF(x) and a given wave
electric field in the resonance point. First we check the
sumption of an isotropic EDF. The discharge parameters
of width L50.2 m; the potential is modeled in the parabo
forms F(x)52U0(2x/L)2 andU055 V, unless stated oth
erwise. The magnetic field is taken in the formB(x)

FIG. 1. The EDF as a function of the perpendicular kine
energy (mv'

2 /25mB) and parallel kinetic energymv i
2/2 at two lo-

cations in the discharge;~a! x50, and~b! x5L/3. L50.2 m, the
electric field in the resonance is 0.7 V/cm, the potent
2U0(x/2L)2, Uo55 V, B(x)5B0@11(2/p)arctan(2x/x0)#, B0

50.0875 T, andx055 cm.
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5B0„11(2/p)arctan(2x/0.1m)…, where B05875 G. In
some runs for the sake of comparison, we use a homo
neous magnetic fieldB5875 G, but with the same value o
velocity kick as for the inhomogeneous magnetic field.
argon pressure orp51 m Torr was assumed, unless stat
otherwise.

In Fig. 1 the EDF’s are shown as functions of the perp
dicular kinetic energy (mv'

2 /25mB) and parallel kinetic en-
ergy mv i

2/2 at the discharge center and atx5L/3. One can
see that the EDF’s are perfectly isotropic at the shown lo
tions. As discussed above, this implies that the EDF is
tropic everywhere. The results of MC calculations confi
this finding. In Fig. 2, EDF’s at different spatial points a
shown. All EDF’s coincide with each other after being r
drawn as a function of the total energy.

The EDF’s calculated by both FM and Monte Carlo me
ods are presented jointly in Fig. 3 for comparison. The agr
ment between FM and MC methods appears to be rea
able. In Fig. 3 one can see that the isotropic EDFdoes not
depend on the magnetic field distribution, provided that the
velocity kick in the resonance is the same, as follows fr
Eq. ~12!.

We also checked if the model of diffusion in energy
correct. For this purpose we calculated the energy diffus
coefficient^D«&5^(D«)2/Dt& with the use of the MC tech

FIG. 2. The EDF as a function of~a! kinetic energy@m(v'
2

1v i
2)/2# and ~b! total energy@m(v'

2 1v i
2)/2#2eF(x) at various

locations in the discharge. The discharge parameters are the sa
in Fig. 1.
e-

-

-
-

-
e-
n-

n

nique by averaging the ratio of the square of the ene
changeD« and timeDt over the electron ensemble. The tim
Dt was chosen large compared with the bounce time and
time between collisionsDt@L/v andn, but not too large, so
that the energy change during timeDt is D«(Dt)!«. For no
electric field present in the plasma~corresponding to a uni-
form plasma density!

^D«&5
^vD̄«&

Lv
5

2p«

3mL

~eE'!2

Udvec

dx U .

In Fig. 4 one can see that the analytical expression pred
the value of̂ D«& fairly well.

VII. ANALYTICAL SOLUTION FOR THE EDF
IN THE LOSS CONE

In this section we shall provide a general solution for t
EDF in the loss cone for any discharge. Simulations of

e as

FIG. 3. The EDF’s calculated from the averaged kinetic eq
tion ~solid lines! and by the MC method~symbols! as functions of
the total energy. The argon pressurep51 m Torr, no wall losses are
accounted for, the given potential profile is2F(x)5U0(2x/L)2,
and the discharge widthL50.2 m. Circles correspond to the mag
netic field B(x)5B0@11(2/p)arctan(2x/x0)#, B050.0875 T, x0

510 cm, and crosses correspond to a homogeneous magnetic
and the same velocity kick.~a! The electric field in the resonance
E'50.7 V/cm. ~b! E'52.1 V/cm.
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EDF in the loss cones have been described in many pap
see, e.g., Ref.@31,37#. However, to our knowledge no ana
lytical solution for the EDF in the loss cone was found e
lier. In this section we provide this analytical solution, a
also show how the wall losses should be incorporated
Eq. ~12! for the main part of the EDF. We start the discu
sion without taking the magnetic field into account, and
the end generalize the result for the presence of an inho
geneous magnetic field. We also assume first that the e
trostatic potential is symmetric in the left and right parts
the discharge. The generalization for an asymmetric poten
is obvious.

Electrons can escape if their energy is higher than the w
potential «.2eFw . The electrons with energies2eFw

,«,2eFw1(2 – 3)Ttail , where Ttail52(d ln f/d«)«52eFw

21

is a characteristic energy scale at the tail of the EDF, de
mine the electron flux to the wall and are of primary intere
Obviously, the flux of electrons with «.2eFw
1(2 – 3)Ttail is negligible. TypicallyTtail;1 – 2 eV@32#, and
for most cases the wall potential is slightly above the ioni
tion potential (I ):2eFw;I . This implies that Ttail
!2eFw . The wall potential can be below the ionizatio
potential in the case of high pressure discharges, where
electron undergoes many collisions before reaching the w
i.e., there is a high probability of ionization event for a sing
pass of an electron across the discharge. Then the wal
tential above the ionization potential is not anymore a n
essary condition for a self-sustained discharge@32#.

Electrons with a given total energy, which can escape
the wall, form a loss cone in the phase space. They are c
acterized by a positive velocity projection perpendicular
the wallsvx(wall).0 and by a parallel energy«x[mvx

2/2
2eF(x).2eFw . The latter condition is equivalent to
perpendicular energy«'[m(vy

21vz
2)/25«2«x being small,

i.e., «',«1eFw . Thus from electrons with a total energ
large enough to overcome the wall potential i.e.,2eFw,«
,2eFw1(2 – 3)Ttail , only a small fraction for which«'

FIG. 4. The energy diffusion coefficient^D̄«&5^(D«)2/Dt& as a
function of energy calculated by the MC method for a homo
neous potential and the analytical expression

^D̄«&5
2p

3

~eE'!2«

mUdvB

dx UL
.

B(x)5B0@11(2/p)arctan(2x/x0)#, B050.0875 T, and electric
field in the resonance isE'50.7 V/cm.
rs;

-

to
-
t
o-
c-

f
ial

ll

r-
t.

-

he
ll,

o-
-

o
ar-

,(2–3)Ttail can actually escape. The fact that the fraction
small follows from the assumptionTtail!2eFw . In other
words, the loss cone is small. The assumption of a small
cone allows us to find an analytical solution for the EDF th
accounts for wall losses.

To find the EDF analytically in the loss cone we sh
assume that the differential cross section has no singulari
small angles. This is correct for an electron kinetic energy
the order of the ionization potential. Figure 5 depicts t
average scattering angle as a function of the energy for ar
@the differential cross sections are given by Eq.~13!#. One
can see that average scattering angle is large,^q&;0.5 rad,
for «;I . For high energies«@I , the differential cross sec
tion eventually should approach Coulomb scattering, so
approximation we used for«;I is not applicable. In the
following we therefore assume the small angle scattering
not important and can be neglected. If important, the sm
angle scattering can be incorporated by describing the c
sion integral as diffusion in the velocity angle.

The distribution function outside the loss cone~OLC! is
quite different from the EDF inside the loss cone~LO! f LC .
The main processes that form the EDF’s inside and outs
the LC are elastic scattering and spatial displacement, so
other processes~inelastic collisions and diffusion in energy!
can be neglected. The collisional integral with neutrals c
be written in the form: St( f )5*( f 82 f )v(ds/dV)dV,
wheref 8 is the EDF of electrons before scattering to a giv
velocity vW . The EDF is determined by the equation

vx

] f

]xU
«

5E ~ f 82 f !v
ds

dV
dV. ~14!

The EDF outside the loss cone is close to isotropic, an
only a function of total energy onlyF0 . Indeed the electrons
outside the loss cone can be scattered into the loss cone
to the elastic collisions, and consequently be lost. But si
the loss cone is assumed to be small, the electrons will
main more frequently in the OLC region rather than lea
to the LC. This results in an isotropic EDF. We can estim

-

FIG. 5. Average scattering angle^q&5
1
2 *0

pP(q,«)sinqdq as a
function of energy for differential cross section taken in the form

P~q,«!5
«

2 ln~11«/2!~« sin2q/211!
.

The solid line corresponds to the calculated integral, and the da
line to the analytical limit at high energies«@1 ^q&→(1
1p/A«)/@2 ln(11«/2)#
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the deviation from the isotropic EDF outside the lo
coned f [ f 2F0 from Eq. ~14!. The collision integral reads
*( f 82 f )v(ds/dV)dV5 *olcf 8v(ds/dV)dV1*cf 8v(ds/
dV)dV2vs f , where the first integral is over the regio
OLC and the second one inside the LC only. For an isotro
EDF, St(F0)50 and *olcF08v(ds/dV)dV1*cF08v(ds/
dV)dV5vsF0 . Substituting f 5F01d f outside the loss
cone andf 5 f lc in the loss cone, we find the collision inte
gral *c( f lc2F0)8v(ds/dV)dV2vsd f 1 *olcd f 8v(ds/
dV)dV. From this equation one can estimate thatd f
&(D lcV/4p)F0!F0 is small, since the loss cone is assum
to be small,D lcV/4p!1.

The relation between an EDF OLC and one in the LC c
be found from Eq.~14!. The main income term of the EDF i
the loss cone is due to the pitch-angle scattering from
outside of the loss cone into the loss cone, which can
estimated as*OLC f 8(ds/dV)vdV'F0vs, since the loss
cone is small, and the integral over any isotropic function
* f 8(ds/dV)vdV'* f (ds/dV)vdV. As a result, Eq.~14!
simplifies to

vx

] f lc

]x U
«

52n~ f lc2F0!,

f lc~x52L/2!50 for vx.0,

and

f lc~x5L/2!50 for vx,0, ~15!

wheren[vs. Equation~15! has obvious solutions

f lc~«,vx ,x!5F0F12expS 2E
2L/2

x ndx

vx
D G for vx.0,

~16a!

f lc~«,vx ,x!5F0F12expS 2E
x

L/2 ndx

uvxu D G for vx,0.

~16b!

A similar solution was found for the electron-electron col
sion integral in Ref.@33#. If we sample the EDF for both
velocity directions; f lc6(«,uvxu,x)5@ f 0(«,vx ,x)1 f 0(«,
2vx ,x)#/2, we find

f lc6~«,uvxu,x!5F0F12expS 2E
0

L/2 ndx

uvxu D coshS E
0

x ndx

uvxu D G .
~16c!

If the mean free path is larger than the gapnL/v!1, the
EDF in the LC is strongly depletedf lc;(nL/v)F0!F0 . In
the opposite case of a small mean free pathnL/vx@1, the
depletion in the LC is smallf lc'F0 due to the fast scatterin
in elastic collisions. At the wallf lc65F0/2 due to the ab-
sence of electrons with velocity directed from the wall t
ward the plasma. The loss cone is empty at the wall and
filled with electrons at distances of the order of the mean f
path according to Eq.~16c!.

Figure 6 depicts EDF’s outside and inside the loss c
calculated by the MC code. One can see that the theore
prediction for a uniform EDF outside the loss cone is reas
able within 20%, which corresponds to the approximation
a small loss coneD lcV/4p!1. In Fig. 6, the EDF’s practi-
ic

d

n

e
e

s

ts
e

e
al
-
f

cally do not depend on the form of the differential cro
sections, also according to the predictions of the theory
follows from Eq.~16c!. The EDF in the LC is spatially uni-
form: f lc65F0*0

L/2(ndx/uvxu) for *0
L/2(ndx/uvx)!1. At P

50.125 m Torr, *0
L/2(ndx/uvxu)50.066!1, and the EDF’s

obtained in the MC simulation at various positions coinci
with each other. AtP51 m Torr, *0

L/2(ndx/uvxu)50.80;1,
and the EDF’s in the LC at the discharge center are lar
than those at the periphery of the discharge.

FIG. 6. EDFf lc(«,uvxu,x) at given total energy«521.5eFw as
a function of the parallel energy at various coordinates. Solid li
correspond to the theoretical estimatef lc(«,uvxu,x50)5 f 0@1
2exp„2*0

L/2(vndx/vx)…#, and dashed lines to the estimate with t
total cross section replaced with the cross section of scatte
outside the loss cone: s→sOLC5*OLC(ds/dV)/dV

5s(E)*0
vx min/vP(q,E)d cosq; iso stands for isotropic cross sectio

~a! p50.125 m Torr,~b! p51 m Torr. ~c! Distribution functions at
discharge center. The wall potentials are2Fw520.6 eV for p
50.125 m Torr, 2Fw516.4 eV for p50.25 m Torr, 2Fw

514.2 eV for p50.5 m Torr, and 2Fw512.4 eV for p
51 m Torr.
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The analytical expression for the ratio of the EDF’s o
side and inside the loss cone,f lc6(x50)/F05@1
2exp„2*0

L/2(ndx/uvxu)…# underestimates the value obtain
in the MC approach. This is probably because of the assu
tion of a small loss cone: it was assumed that an elec
leaves the loss cone after scattering in any elastic collision
more comprehensive theory should be developed for a m
thorough description. For an approximate accounting of
fact, we can change the total cross-section to the cr
section of scattering only outside the loss cone:

s5*~ds/dV!dV→solc

5*olc~ds/dV!dV

5s~E!*0
vx min /v

P~q,E!d cosq,

where (mvx min
2 /2)2eF(x)52eFw . In Fig. 6 one can see

that such substitution~compare dashed lines with solid one!
improves the agreement of MC results with this theory.

Knowing the EDF in the loss cone, the average freque
of the electron losses to the walls,nescape(«), with a total
energy«, can be found. First we consider the case with
electric field present in the plasma bulk, and then discuss
general situation. Integration of the fluxvxf lc(x5L) over all
possible velocity directions at the wall*2v

v dvx/2v yields the
average electron fluxGw(«) of electrons with a given tota
energy«:

Gw~«!52E
vx min

v dvx

2v
vxF0F12expS 2E

2L/2

L/2 ndx

vx
D G . ~17!

where (mv2/2)2eF(L/2)5« is the maximum velocity nea
the wall in front of the sheath; (mvx min

2 /2)2eF(L/2)5
2eFw is the minimum velocity of electrons capable of ove
coming the wall potential and escaping and the factor o
accounts for the two walls. The average escape frequen
given by the ratio of the flux to the total electron density
the plasma slab of a widthL, nescape[Gw(«)/(F0L):

nescape~«!5E
0x min

v dvx

vL
vxF12expS 2E

2L/2

L/2 ndx

vx
D G . ~18!

In Eq. ~18!, losses at both walls are accounted for. If t
mean free path is smaller than the gap, thenf lc'F0 and
nescape(«)'*vx min

v (dvx /vL)vx5(«1eFw) /mvL, the average

flux to the wall isGw5(«1eFw)/2mv)F0 . In the two-term
approximation this corresponds to the boundary condition
the plasma sheath boundary in the form

2vDx

]F0~«,x!

]x U
x5L

5
«1eFw

2m
F0~«,L !. ~19!

In Eq. ~19!, losses at the nearest wall are only accounted
the factor 1

2. In Refs.@31,34#, approximate boundary cond
tions were used, which can be deduced from Eq.~17! if the
velocity projection is substituted for the absolute value
velocity vx→v. Note that the boundary condition~19! is
more appropriate as the correct one, and even more sim
In the opposite case of a large mean free path,nescape(«)
5*vx min

v dvx /(vL)vx*2L/2
L/2 (ndx/vx);n(DecV/4p) is propor-
-

p-
n
A
re
is
s-

y

o
he

2
is

at

r

f

le.

tional to the probability of scattering from the region outsi
the loss cone to the loss cone@31,34#.

Wall losses should be introduced into the averaged
~12! according to

v n̄escape~«!5E
vx min

v
vxF12expS 2E

2L/2

L/2 ndx

vx
D Gdvx .

Equation ~12! describes the change of electron dens
with given total energyN(«)5* f («,x)dvxdvydvzdxd„«
2mv2/21eF(x)…. The rate of wall loss of electrons is give
by wall flux vxf ux56L/2 , and the total loss of particles with
given total energy is

@]N~«!/]t#uw5E f ~«,6L/2!vxdvx

dvydvzd~«2mv2/21eFw!.

Integration over the perpendicular kinetic energy yields
previous result, i.e., Eq.~18!. In a plasma with a nonuniform
potential it is more convenient to integrate over the perp
dicular energy@«'5m(vy

21vy
2)/2#, since it is conserved

during collisionless motion:

vnescape5E
0

«1ewwF12expX2E
2L/2

L/2

3AS «1eF~x!

«1eF~x!2«'
DNasea

totaldxCGd«' /m.

In Fig. 7, EDF’s calculated using the averaged kine
equation and the MC method are compared. Both ED
agree well for energies up to«,22Fw . For higher energies
the values of the EDF calculated by MC code are mu
higher than theoretical predictions. The reasons are not c
Possibly the concept of diffusion in energy fails, since ele
trons of these energies are not trapped and leave the
charge with a frequency approximately equal to the bou
frequency. This implies that there are no longer ma
bounces in the resonance region, and averaging over m
interactions with resonance is not adequate. Other rea
for the discrepancy mentioned above could be the numer
limits of the MC simulation, particularly the finite period o
the random number generator~RNG!. This could be so in
spite of the good quality of the RNG used in the simulati
because of the large range of EDF values under investiga
~more than four orders of magnitude!. We discuss these ef
fects elsewhere.

For an inhomogeneous magnetic field, averaging sho
be performed accordingly:

vnescape5(
6

E
0

mmaxF12expX2E
2L/2

L/2

3AS «1eF~x!

«1eF~x!2mB~x! DNasea
totaldxCG

3
B~6L/2!

2m
dm,
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where the sum is taken over the left~2! and right~1! loss
cones, andmmax5m(«1eFw)/B(6L/2).

VIII. SELF-CONSISTENT FAST MODELING OF
ELECTRON CYCLOTRON RESONANCE DISCHARGE

WITH THE USE OF ELECTRON BOLTZMANN
KINETIC EQUATION AVERAGED OVER FAST

ELECTRON BOUNCING AND PITCH-ANGLE
SCATTERING

In this section we summarize previous results and pre
a full system for the modeling of ECR discharges. Examp
of calculations will be given at the end of this section.

The self-consistent set of equations is very similar to
one we used for the modeling of capacitively coupled pl
mas@12#. To obtain a complete set of equations, it is nec
sary to determine electron density and ionization rate via
EDF:

4p

m E
2eF~x!

`

F0~«!AS 2

m
„«1eF~x!…Dd«5ne~x!,

~20!

FIG. 7. The EDF’s calculated from the averaged kinetic eq
tion ~lines! and by the MC method~symbols! as functions of the
total energy with account for wall losses~dashed lines! and without
account of wall losses~solid lines!; E'50.7 V/cm. ~a! p
50.25 m Torr,2Fw516.4 eV, ~b! p51 m Torr, 2Fw514.2 eV.
nt
s

e
-
-
e

Rion~x,t !5
4p&

m3/2 E
2eF~x!1I

`

@Navs ion„«1eF~x!…#

3F0~«!A«1eF~x!d«, ~21!

whereNa is the neutral atom density,s ion is the ionization
cross section, andI is the ionization threshold.

The quasineutrality condition determines the ambipo
potential

4p

m E
2eF~x!

`

F0~«!AS 2

m
„«1eF~x!…Dd«5ni~x!, ~22!

The boundary conditions are of the formFux50
50,(dF/dx)ux5050. The ion mean free path is muc
smaller than that of the electrons, so we assume that the
mean free path is smaller than the discharge width. In
general case the ion kinetic equation should be solved.
ion continuity equation reads

]ni

]t
1

]niui

]x
5Rion~x,t !, ~23!

whereRion(x,t) is the ionization rate. For the determinatio
of the ion velocity we use the nonlinear ion mobility take
from Ref. @12#. The boundary conditions have to be appli
at the sheath boundary:ui(6L/2)5uB[ATe /M , whereTe

52(d ln f/d«)«52w(L/2)
21 ; we used the generalized Bohm cr

terion for an arbitrary EDF@14,35#.
The electron kinetic equation~11! taking account of

losses to the walls and electron-electron collisions, reads

2
d

d« S @vD«~«!1vD«ee~«!#
dF0~«!

d« D
2

d

d«
„vV«ee~«!F0~«!…

52Fvnescape1(
k

vnk* ~«!GF0~«!

1(
k

vnk* ~«1«k* !F0~«1«k* !,

~vV«!ee5
mv3

2n~x!
8pnee~v,x!E

eF~x!

«

d«
v
m

F0~«!,

~vD«!ee5
4p

3

mv3

n~x!
nee~v,x!F E

2eF~x!

«

d«
v3

m
F0~«!

1
v3

m E
«

`

d« F0~«!G , ~24!

where

nee~v,x!5@4pe4n~x!ln Lee#/m
2v3,

v5A~2/m!„«2eF~x!…,

and lnLee is the Coulomb logarithm, andk enumerates in-
elastic processes~excitation and ionization!:

-



e
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FIG. 8. The EDF’s as functions of the total energy calculated from the self-consistent set of equations~24!. The ECR resonance is in th
discharge center.
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vnescape5(
6

E
0

mmaxF12expX2E
2L/2

L/2

3AS «1eF~x!

«1eF~x!2mB~x! DNasea
totaldxCG

3
B~6L/2!

2m
dm,

where the sum is taken over left~2! and right ~1! loss
cones,mmax5m(«1eFw)/B(6L/2),

^vD&«5
4p

3

~eE'«!2

mUdvB

dx UA2m«

,

and the upper bar denotes only averaging in the coordina
constant total energy:

G~v !5E
x2~«!

x1~«!

dx G@A2„«1eF~x!…/m#.

The last term on the right-hand side of Eq.~24! describes
the production of slow electrons in inelastic collisions. In t
ionization processes two electrons are created so the ion
tion income term is a bit more complicated than the one
excitation. We assume that progeny electrons are born
cording to the probability distribution functionS(W,E)
5s ion(E)P(W,E), whereW is the energy of the progen
at

a-
r
c-

electrons,E is the energy of the primary electron,s ion is the
ionization cross section, and*0

(E2I )/2P(W,E)dW51. Prog-
eny electrons have lower energy than primary electronsW
,(E2I )/2, by definition. According to the Pauli principle
electrons are not distinguishable, so we cannot different
which electron was primary. For example, in Ref.@36# the
probability function was taken in the form

P~W,E!5
B

~W21B2!arctanFE2I

2B G ,

and B was set to 10 eV. For (E2I ),2B we obtain
P(W,E)52/(E2I ), which is uniform in the energy of prog
eny electrons. For (E2I )@2B we obtain P(W,E)
'1/2d(W), i.e. all progeny electrons are created at low e
ergies. Summing all possible income channels, the rate
production of slow electrons with energyW is

Rion~W!5E
«11

`

PS~W,E!A2E/mn ion~E!F0~E!dE,

~25!

wheren ion5vs ion is the ionization frequency, and

PS~W,E!5H P~W,E!, W,~E2I !/2

P~E2I 2W,E!, W.~E2I !/2

is the probability for an electron with kinetic energyE to
create an electron with kinetic energyE. For example, for the
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simplest case when both primary and progeny electr
are assumed to be born with the same ene
1
2 (E2I ), P(W,E)52d„W2(E2I )/2… and Rion(W)
54A2(2W1I )/mn ion(2W1I )F0(2W1I ).

The wall potential is to be found from the balance of t
ion and electron fluxes to the wall:Gew5G iw :

n~L/2!uB5
4p

m E
2eF~x!

`

F0~«!vnescape~«!d«. ~26!

The electric field in the resonance point can be related to
total power dissipated in the discharge. The easiest wa
calculate the power density is to integrate the electron-w
interaction integral in the form of Eq.~5!: integration
(1/m)*dm dv II («2eF)*dx B(x)St

ECR( f ) yields the total
power density deposited into the discharge. After two par
integrations,

P5
1

m E dmdv II F0Fv II S ]

]m
DmD G

5n~xr !FBv II S ]Dm

]m D G , ~27!

TABLE I. The effective temperatures, wall potential, two-third
of the mean electron energy, potential at the plasma-sheath bo
ary, and the potential drop in the sheath at a low power densit

p
~m Torr!

2
3^«&
~eV!

Fsh,
~eV!

Tsh,
~eV!

Fw

~eV!
Tw

eV
(Fsh2Fw)/4.7

~eV!
F0(Fw)
F0(Fsh)

1 5.0 3.8 6.6 20.7 2.2 3.6 39
10 4.0 7.5 4.8 17.4 1.4 2.1 50
30 3.6 9.1 3.6 16.7 1.1 1.6 58
s
y

e
to
e

l

Fortunately the last factor in bracketsv II (]Dm /B]m)
5pecE'

2 /udB/dxu is a constant.The power deposited into
the discharge per unit area is determined only by the plas
density, the electric field amplitude, and the derivative of
magnetic field in the resonance point, and does not dep
on the EDF form.

Thus the self-consistent description of the ECR discha
is completed. The full set of equations includes the elect
kinetic equation~24!, the ion continuity equation~23!, and
the ionization source term in the form of Eq.~21!; the equa-
tion for the sheath potential equation~26!; the power depos-
ited in the discharge@Eq. ~27!#; and the quasineutrality con
dition represented by Eq.~22!.

In Fig. 8, the EDF evolution versus discharge power d
sity is plotted for three pressures—1, 10, and 30 m Torr. O
can see that at low discharge power densities the EDF’s
similar. At higher powers~;10 W/cm2! the EDF’s approach
a Maxwellian shape due to the influence of electron co
sions. At lower powers the EDF is strongly non-Maxwellia
The abrupt drop in the EDF’s due to losses to the walls st
at the energy of the wall potential,Fw . The corresponding
slope of the EDF is characterized by an effective tempera
Teff(«)[(d ln@F0(«)#/d«)21 and is presented in Table I fo
lower powers, i.e., where all EDF’s are similar. As can
seen, for lower pressureTeff(2eFw) increases, which is a
common property of all discharges. The effective tempe
ture in the tail is about three times lower than two thirds
the average kinetic energy. In the case of a Maxwellian E
they should coincide. The large difference indicates the
portance of accurate calculation of losses in the EDF tai

In Fig. 9 the EDF’s depicted for the case of ECR res
nance are shifted from the center toward one of the wall
one-fourth of the gap. The electrons trapped in the poten
well in the center are not heated and have a very low te

d-
d
f

f

FIG. 9. The EDF’s as func-
tions of the total energy calculate
from the self-consistent set o
equations ~24!. The ECR reso-
nance is shifted to one-fourth o
the gap.
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FIG. 10. The plasma density
wall potential, and mean electro
energy as functions of power pe
unit area from the self-consisten
set of equations~24!.
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2.4
perature, determined by the energy exchange in elect
electron collisions with other electrons, energetic enough
reach the ECR resonance. For a higher plasma density
energy exchange is more effective, so the cold part of
EDF approaches the main part. In contrast, at low powers
temperature of the cold electrons can be as low as ro
temperature, similar to the case of the negative glow i
direct current discharge or an afterglow@37#. The presence o
cold electrons was observed experimentally@38#, and will be
considered in Sec. IX.

The central plasma density, wall potentialFw , the mean
electron energy, the potential at the plasma-sheath boun
Fsh, and the potential difference in the sheathFw2Fsh are
shown as functions of the power density in Figs. 10 and
Since the EDF form changes only slightly at low powers,
wall potential, the potential at the plasma-sheath bound
and the mean electron energy do not vary much with pow
and the plasma density is proportional to the power dens

The sheath potential is governed by the ratio of the cen
and boundary densities, and decreases with pressure ac
ing to Bohm’s criterion. The effective frequency of wa
losses@see Eq.~24!# is typically higher than the ionization
frequency at these low pressures. The total electron flu
the wall and the total number of ionizations are equal to
ion flux to the wall @Eq. ~26!#. This implies that the wall
potential is higher than the ionization potential and increa
n-
to
he
e
e

m
a

ry

.
e
y,
r,
y.
al
rd-

to
e

s

with pressure, since the temperature in the EDF tail a
increases.

The potential drop in the sheath—the difference in t
wall and sheath potentialFw2Fsh—appears to equalize th
electron flux to the wall~in the case of Maxwell EDF
n(L/2)ATe/2pm! and the ion fluxn(L/2)ATe /M . For a
Maxwellian EDF it yields Fw2Fsh51/2eTe ln(M/2pm)
54.7Te /e for argon. In reality the EDF is not Maxwellian
and not even isotropic. For example, as can be seen f
Table I, the electron temperature can change by a factor
in the range2eFsh,«,2eFw . At not very low pressures
when the electron mean free path is smaller than the gap
loss cone is ‘‘filled’’ and the EDF is close to isotropic; se
Sec. VII. So we can expect 4.7Te(2eFw),euFw2Fshu
,4.7Te(2eFsh), as can be seen in Table I. In the case o
Maxwellian EDF the ratio of EDF’s F0(2eFsh)/F0

(2eFw) is AM /2pm5111 for argon. Due to a large varia
tion of the effective temperature this ratio is smaller by
factor of 2–3 for EDF’s in Figs. 8–11; see Table I.

IX. COMPARISON OF EXPERIMENTAL DATA
AND FM RESULTS

We compared the FM results with optical measureme
of the EDF’s in an ECR nitrogen discharge@39# driven by
microwaves at a frequency of 9.7 MHz, a pressure of
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31025 Torr, and a power of 100 W@2#. Unfortunately the
radial distribution of the microwave power density was n
reported in this experiment, so we could not perform a
tailed comparison with the self-consistent modeling. Tha
why we assumed an average value of 0.141 W/cm2 for the
density per unit area, and the collisionless limit~the ion
mean free path is larger than plasma gap! for the axial profile
of the plasma density@14#. The plasma density of 4.0
31010cm23 was taken from the experiment. The comparis
is shown in Fig. 12. As can be seen, there is a satisfac
agreement with the EDF slope in the tail, but a considera
difference in the low-energy part. The most probable reas
for this are the more complicated power deposition than w
is introduced in the model, and the radial inhomogeneity
the EDF’s, which are spatially averaged in the experimen
data. The Doppler shift effect can be important for a pro
modeling of the wave-particle interaction at high power de
sities @20#.

To show the great influence of different processes on
EDF, we performed a number of calculations while varyi
power, plasma density, point of resonance, etc. Both ca
lations with the resonance in the center and with the re
nance shifted to the periphery give the same results for
given density due to an effective energy mixing in t
electron-electron collisions. We scaled down the power
plasma density in order to investigate the possibility of f
mation of cold electrons when the ECR resonance is shi
to one-fourth of the discharge length, i.e., out of the assum
minimum of the electron potential energy at the discha
center. As can be seen from Fig. 12, the cold electrons
pear only at a considerably decreased plasma density—
times lower than the experimental value—because at la
plasma densities the electron-electron collisions effectiv

FIG. 11. The potential at the plasma-sheath boundary (Fsh) and
potential drop in the sheath (Fw2Fsh) as a function of power
density from the self-consistent set of equations~24!.
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interchange energy among electrons with different energ
Note that due to the energy losses in the vibrational exc
tion the formation of cold electrons is more favorable
nitrogen than in noble gases. We have performed s
consistent calculations of EDF’s at a pressure of 1 m T
@see Fig. 12~b!#, and found the formation of cold electrons
nitrogen at powers 100 times higher than in argon. The
brational losses are not important for EDF formation at ve
low pressures of 1025 Torr, and start to be important only i
artificially increased 100 times. Therefore, the actual rea
for the formation of a large fraction of cold electrons
experiment@38# remains unclear.

X. CONCLUSIONS

An electron Boltzmann kinetic equation averaged over
fast electron bouncing and pitch-angle scattering was der
in order to develop an effective and operative tool for the f
modeling~FM! of low-pressure ECR discharges. An analy
cal solution for the EDF in a loss cone was derived. T
validity of the fast modeling method has been proved b
comparison with Monte Carlo simulations. The comple
system of equations for FM is presented and ready for us
a comprehensive study of ECR discharges. The variation
plasma density and of wall and sheath potentials are a

FIG. 12. The EDF’s in N2 as functions of the kinetic energy~a!
measured in Ref.@2# and calculated by the FM method at a pow
density of 0.141 W/cm2 and a plasma density of 4.031010 cm23.
For comparison, the number of calculated EDF’s are presented
various cases: artificially increased losses due to vibrational ex
tion ~100 times!; the power scaled up ten times; power and plas
density decreased 30 times; and a resonance point positionedL
5L/4. ~b! Calculated EDF at a pressure of 1 m Torr and a pow
per unit area of 1.4 W/cm2.
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lyzed by solving a self-consistent set of equations for
EDF in the loss cone.
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